首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
alpha-latrotoxin (LTX), a 120 kDa protein in black widow spider venom, triggers massive neurotransmitter exocytosis. Previous studies have highlighted a role for both intrinsic pore-forming activity and receptor binding in the action of this toxin. Intriguingly, activation of a presynaptic G protein-coupled receptor, latrophilin, may trigger release independent of pore-formation. Here we have utilized a previously identified ligand of nematode latrophilin, emodepside, to define a latrophilin-dependent pathway for neurotransmitter release in C. elegans. In the pharyngeal nervous system of this animal, emodepside (100 nM) stimulates exocytosis and elicits pharyngeal paralysis. The pharynxes of animals with latrophilin (lat-1) gene knockouts are resistant to emodepside, indicating that emodepside exerts its high-affinity paralytic effect through LAT-1. The expression pattern of lat-1 supports the hypothesis that emodepside exerts its effect on the pharynx primarily via neuronal latrophilin. We build on these observations to show that pharynxes from animals with either reduction or loss of function mutations in Gq, phospholipaseC-beta, and UNC-13 are resistant to emodepside. The latter is a key priming molecule essential for synaptic vesicle-mediated release of neurotransmitter. We conclude that the small molecule ligand emodepside triggers latrophilin-mediated exocytosis via a pathway that engages UNC-13-dependent vesicle priming.  相似文献   

4.
The nematode Caenorhabditis elegans can sense and respond to hundreds of different chemicals with a simple nervous system, making it an excellent model for studies of chemosensation. The chemosensory neurons that mediate responses to different chemicals have been identified through laser ablation studies, providing a cellular context for chemosensory signaling. Genetic and molecular analyses indicate that chemosensation in nematodes involves G protein signaling pathways, as it does in vertebrates, but the receptors and G proteins involved belong to nematode-specific gene families. It is likely that about 500 different chemosensory receptors are used to detect the large spectrum of chemicals to which C. elegans responds, and one of these receptors has been matched with its odorant ligand. C. elegans olfactory responses are also subject to regulation based on experience, allowing the nematode to respond to a complex and changing chemical environment.  相似文献   

5.
A crucial issue in comparative proteomics is the accurate quantification of differences in protein expression levels. To achieve this, several methods have been developed in which proteins are labeled with stable isotopes either in vivo via metabolic labeling or in vitro by protein derivatization. Although metabolic labeling is the only way to obtain labeling of all proteins, it has thus far only been applied to single- celled organisms and cells in culture. Here we describe quantitative 15N metabolic labeling of the multicellular organisms Caenorhabditis elegans, a nematode, and Drosophila melanogaster, the common fruit fly, achieved by feeding them on 15N-labeled Escherichia coli and yeast, respectively. The relative abundance of individual proteins obtained from different samples can then be determined by mass spectrometry (MS). The applicability of the method is exemplified by the comparison of protein expression levels in two C. elegans strains, one with and one without a germ line. The methodology described provides tools for accurate quantitative proteomic studies in these model organisms.  相似文献   

6.
GTPases of the Rho family are evolutionarily conserved proteins that control cell shape dynamics during physiological processes as diverse as cell migration and polarity, axon outgrowth and guidance, apoptosis and phagocytosis. In mammals, 18 Rho proteins are distributed in 7 subfamilies. Rho, Rac and Cdc42 are the best-characterized ones, benefiting from the use of worm and drosophila, which only express these 3 subfamilies. An additional model would therefore help understand the physiological role of other mammalian subfamilies. We identified in genome databases the complete Rho family of two ascidians, Ciona intestinalis and Ciona savignyi, and showed that these families contain single ancestors of most mammalian Rho subfamilies. In Ciona intestinalis, all Rho genes are expressed and display specific developmental variations of mRNA expression during tadpole formation. Although C. intestinalis expresses five additional Rac compared to the closely related Ciona savignyi, only two appeared fully active in functional assays. Last, we identified in Ciona intestinalis database more than 50 Rho regulators (RhoGEFs and RhoGAPs) and 20 effector targets, whose analysis further supports the notion that Rho signaling components are of comparable complexity in mammals and ascidians. Since the tadpole of ascidians combines vertebrate-like developmental features with reduced cell number, particularly adapted to evolutionary and developmental biology studies, our data advocate this model for physiological studies of Rho signaling pathways.  相似文献   

7.
This paper reviews the advantages of the yeast Yarrowia lipolytica as a tool in the study of protein secretion. Work has been focused on the early steps leading the polypeptide, from the cytoplasmic ribosomes where it is synthesized, to the lumen of the endoplasmic reticulum. Using a thermosensitive allele of the 7SL RNA, the first in vivo evidence for a co-translational translocation was shown. Genetic screens allowed the identification of several new components of the translocation apparatus: Sls1p, an ER lumenal component involved in both translocation and lumenal transit; Tsr1p, involved in SRP-ribosome targeting; Tsr3p. Major translocation partners were also identified by reverse genetics (Sec61p, Sec62p, Kar2p, Srp54p, Sec65p).  相似文献   

8.
9.
Fitch DH 《Current biology : CB》2005,15(17):R655-R658
Despite low global diversity among natural populations of Caenorhabditis elegans, neighboring populations can be as genetically distinct as strains from different continents, probably owing to transient bottlenecks and ongoing dispersal as a dauer larva. Selfing predominates in the wild, but rare outcrossing may also play an important role.  相似文献   

10.
We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.  相似文献   

11.
Evans EA  Chen WC  Tan MW 《Aging cell》2008,7(6):879-893
The Caenorhabditis elegans DAF-2 insulin-like signaling pathway, which regulates lifespan and stress resistance, has also been implicated in resistance to bacterial pathogens. Loss-of-function daf-2 and age-1 mutants have increased lifespans and are resistant to a variety of bacterial pathogens. This raises the possibility that the increased longevity and the pathogen resistance of insulin-like signaling pathway mutants are reflections of the same underlying mechanism. Here we report that regulation of lifespan and resistance to the bacterial pathogen Pseudomonas aeruginosa is mediated by both shared and genetically distinguishable mechanisms. We find that loss of germline proliferation enhances pathogen resistance and this effect requires daf-16, similar to the regulation of lifespan. In contrast, the regulation of pathogen resistance and lifespan is decoupled within the DAF-2 pathway. Long-lived mutants of genes downstream of daf-2, such as pdk-1 and sgk-1, show wildtype resistance to pathogens. However, mutants of akt-1 and akt-2, which we find to individually have modest effects on lifespan, show enhanced resistance to pathogens. We also demonstrate that pathogen resistance of daf-2, akt-1, and akt-2 mutants is associated with restricted bacterial colonization, and that daf-2 mutants are better able to clear an infection after challenge with P. aeruginosa. Moreover, we find that pathogen resistance among insulin-like signaling mutants is associated with increased expression of immunity genes during infection. Other processes that affect organismal longevity, including Jun kinase signaling and caloric restriction, do not affect resistance to bacterial pathogens, further establishing that aging and innate immunity are regulated by genetically distinct mechanisms.  相似文献   

12.
13.
During C. elegans development, animals must choose between reproductive growth or dauer diapause in response to sensory cues. Insulin/IGF-I and TGF-beta signaling converge on the orphan nuclear receptor daf-12 to mediate this choice. Here we show that daf-9 acts downstream of these inputs but upstream of daf-12. daf-9 and daf-12 mutants have similar larval defects and modulate insulin/IGF-I and gonadal signals that regulate adult life span. daf-9 encodes a cytochrome P450 related to vertebrate steroidogenic hydroxylases, suggesting that it could metabolize a DAF-12 ligand. Sterols may be the daf-9 substrate and daf-12 ligand because cholesterol deprivation phenocopies mutant defects. Sensory neurons, hypodermis, and somatic gonadal cells expressing daf-9 identify potential endocrine tissues. Evidently, lipophilic hormones influence nematode metabolism, diapause, and life span.  相似文献   

14.
The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.  相似文献   

15.
16.
The C. elegans intestine is a simple tube consisting of a monolayer of epithelial cells. During embryogenesis, cells in the anterior of the intestinal primordium undergo reproducible movements that lead to an invariant, asymmetrical 'twist' in the intestine. We have analyzed the development of twist to determine how left-right and anterior-posterior asymmetries are generated within the intestinal primordium. The twist requires the LIN-12/Notch-like signaling pathway of C. elegans. All cells within the intestinal primordium initially express LIN-12, a receptor related to Notch; however, only cells in the left half of the primordium contact external, nonintestinal cells that express LAG-2, a ligand related to delta. LIN-12 and LAG-2 mediated interactions result in the left primordial cells expressing lower levels of LIN-12 than the right primordial cells. We propose that this asymmetrical pattern of LIN-12 expression is the basis for asymmetry in later cell-cell interactions within the primordium that lead directly to intestinal twist. Like the interactions that initially establish LIN-12 asymmetry, the later interactions are mediated by LIN-12. The later interactions, however, involve a different ligand related to delta, called APX-1. We show that the anterior-posterior asymmetry in intestinal twist involves the kinase LIT-1, which is part of a signaling pathway in early embryogenesis that generates anterior-posterior differences between sister cells.  相似文献   

17.
18.
A whole-genome RNAi Screen for C. elegans miRNA pathway genes   总被引:1,自引:0,他引:1  
Parry DH  Xu J  Ruvkun G 《Current biology : CB》2007,17(23):2013-2022
BACKGROUND: miRNAs are an abundant class of small, endogenous regulatory RNAs. Although it is now appreciated that miRNAs are involved in a broad range of biological processes, relatively little is known about the actual mechanism by which miRNAs downregulate target gene expression. An exploration of which protein cofactors are necessary for a miRNA to downregulate a target gene should reveal more fully the molecular mechanisms by which miRNAs are processed, trafficked, and regulate their target genes. RESULTS: A weak allele of the C. elegans miRNA gene let-7 was used as a sensitized genetic background for a whole-genome RNAi screen to detect miRNA pathway genes, and 213 candidate miRNA pathway genes were identified. About 2/3 of the 61 candidates with the strongest phenotype were validated through genetic tests examining the dependence of the let-7 phenotype on target genes known to function in the let-7 pathway. Biochemical tests for let-7 miRNA production place the function of nearly all of these new miRNA pathway genes downstream of let-7 expression and processing. By monitoring the downregulation of the protein product of the lin-14 mRNA, which is the target of the lin-4 miRNA, we have identified 19 general miRNA pathway genes. CONCLUSIONS: The 213 candidate miRNA pathway genes identified could act at steps that produce and traffic miRNAs or in downstream steps that detect miRNA::mRNA duplexes to regulate mRNA translation. The 19 validated general miRNA pathway genes are good candidates for genes that may define protein cofactors for sorting or targeting miRNA::mRNA duplexes, or for recognizing the miRNA base-paired to the target mRNA to downregulate translation.  相似文献   

19.
A screen for synthetic enhancers of sli-1 identified ark-1 (forAck-related tyrosine kinase), a novel inhibitor of let-23 EGFR signaling in C. elegans. An ark-1 mutation synergizes with mutations in other negative regulators of let-23, resulting in increased RAS signaling. Genetic analysis suggests that ARK-1 acts upstream of RAS and is dependent upon SEM-5. ARK-1 inhibits LET-23-mediated ovulation, a RAS-independent function. ARK-1 physically interacts with SEM-5 in the yeast two-hybrid assay. We find that sem-5 also has a negative function in let-23-mediated ovulation and suggest that this negative function is mediated by the recruitment of inhibitors such as ARK-1.  相似文献   

20.
For almost four decades, the nematode Caenorhabditis elegans has been of great value in many fields of biological research. It is now used extensively in studies of microbial pathogenesis and innate immunity. The worm lacks an adaptive immune system and relies solely on its innate immune defences to cope with pathogen attack. Infectious microbes, many of which are of clinical interest, trigger specific mechanisms of innate immunity, and provoke the expression of antifungal or antibacterial polypeptides. In this review, we highlight some of these families of antimicrobial peptides (AMPs) and proteins that are candidates for the development of novel antibiotics. In addition, we describe how systems of C. elegans infection provide an increasing number of possibilities for large-scale in vivo screens for the discovery of new antimicrobial drugs. These systems open promising perspectives for innovative human therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号