首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether female athletes have unusually low energy requirements as suggested by many food intake studies, energy expenditure (EE) and intake were assessed in nine elite distance runners [26 +/- 3 (SD) yr, 53 +/- 4 kg, 12 +/- 3% body fat, and 66 +/- 4 ml.kg-1.min-1 maximal O2 uptake]. Subjects were admitted to a metabolic ward for 40 h during which 24-h sedentary EE was measured in a respiratory chamber. Free-living EE was then assessed by the doubly labeled water method for the next 6 days while the women recorded all food intake, daily body weight, and training mileage (10 +/- 3 miles/day). Energy intakes estimated from free-living EE (2,826 +/- 312 kcal/day) and body weight changes (-84 +/- 71 g/day) averaged 221 +/- 550 kcal/day in excess of those calculated from food records (2,193 +/- 466 kcal/day). The energy cost of training (1,087 +/- 244 kcal/day) was calculated as the difference between free-living EE and 24-h EE in the respiratory chamber (1,681 +/- 84 kcal/day) corrected for the thermic effect of food of the extra energy intake. These data do not support the hypothesis that training as a distance runner results in metabolic adaptations that lower energy requirements in women.  相似文献   

2.
The purpose of this study was to compare 24-h substrate oxidation in older (OM; 60-75 yr, n = 7) and younger (YM; 20-30 yr, n = 7) men studied on sedentary day (Con) and on a day with exercise (Ex; net energy expenditure = 300 kcal). Plasma glucose and free fatty acids were also measured at several time points during the 24-h measurement. Weight was not different in OM and YM (means +/- SD; 84.8 +/- 16.9 vs. 81.4 +/- 10.4 kg, respectively), although percent body fat was slightly higher in OM (25.9 +/- 3.5 vs. 21.9 +/- 9.7%; P = 0.17).Values of 24-h energy expenditure did not differ in OM and YM on the Con (means +/- SE; 2,449 +/- 162 vs. 2,484 +/- 104 kcal/day, respectively) or Ex (2,902 +/- 154 vs. 2,978 +/- 122 kcal/day) days. Under both conditions, 24-h respiratory quotient was significantly lower and fat oxidation significantly higher in OM. Glucose concentrations were not different at any time point, but plasma free fatty acid concentrations were higher in OM, particularly following meals. Thus, under these controlled conditions, 24-h fat oxidation was not reduced and was in fact greater in OM. We speculate that differences in the availability of circulating free fatty acids in the postprandial state contributed to the observed differences in 24-h fat oxidation in OM and YM.  相似文献   

3.
Objective: To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents. Research Methods and Procedures: One‐year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat‐free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet‐induced EE (DIEE). Results: Sex‐ and Tanner stage–specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL0 = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph. Discussion: Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity.  相似文献   

4.
The purpose of this study was to determine whether greater body fat mass (FM) relative to lean mass would result in more severe muscle damage and greater decrements in leg strength after downhill running. The relationship between the FM-to-fat-free mass ratio (FM/FFM) and the strength decline resulting from downhill running (-11% grade) was investigated in 24 male runners [age 23.4 +/- 0.7 (SE) yr]. The runners were divided into two groups on the basis of FM/FFM: low fat (FM/FFM = 0.100 +/- 0.008, body mass = 68.4 +/- 1.3 kg) and normal fat (FM/FFM = 0.233 +/- 0.020, body mass = 76.5 +/- 3.3 kg, P < 0.05). Leg strength was reduced less in the low-fat (-0.7 +/- 1.3%) than in the normal-fat individuals (-10.3 +/- 1.5%) 48 h after, compared with before, downhill running (P < 0.01). Multiple linear regression analysis revealed that the decline in strength could be predicted best by FM/FFM (r2 = 0.44, P < 0.05) and FM-to-thigh lean tissue cross-sectional area ratio (r2 = 0.53, P < 0.05), with no additional variables enhancing the prediction equation. There were no differences in muscle glycogen, creatine phosphate, ATP, or total creatine 48 h after, compared with before, downhill running; however, the change in muscle glycogen after downhill running was associated with a higher FM/FFM (r = -0.56, P < 0.05). These data suggest that FM/FFM is a major determinant of losses in muscle strength after downhill running.  相似文献   

5.
Stimulation of beta-adrenergic receptors (beta-AR) by the sympathetic nervous system (SNS) modulates energy expenditure (EE), but substantial interindividual variability is observed. We determined whether the thermogenic response to beta-AR stimulation is related to genetic variation in codon 16 of the beta(2)-AR, a biologically important beta-AR polymorphism, and whether differences in SNS activity (i.e., the stimulus for agonist-promoted downregulation) are involved. The increase in EE (DeltaEE, indirect calorimetry, ventilated hood) above resting EE in response to nonspecific beta-AR stimulation [iv isoproterenol: 6, 12, and 24 ng/kg fat-free mass (FFM)/min] was measured in 46 healthy adult humans [Arg16Arg: 9 male, 7 female, 48 +/- 5 yr; Arg16Gly: 11 male, 4 female, 53 +/- 5 yr; Gly16Gly: 3 male, 12 female, 48 +/- 5 yr (means +/- SE)]. Neither FFM-adjusted baseline resting EE (P = 0.83) nor the dose of isoproterenol required to increase EE 10% above resting (P = 0.87) differed among the three groups (Arg16Arg: 5,409 +/- 209 kJ/day, 11.2 +/- 2.1 ng x kg FFM(-1) x min(-1); Arg16Gly: 5,367 +/- 272 kJ/day, 11.1 +/- 2.1 ng x kg FFM(-1) x min(-1); Gly16Gly: 5,305 +/- 159 kJ/day, 10.5 +/- 1.4 ng x kg FFM(-1) x min(-1)). Consistent with this, muscle sympathetic nerve activity and plasma norepinephrine concentrations were not different among the groups. Group differences in sex composition did not influence the results. Our findings indicate that the thermogenic response to nonspecific beta-AR stimulation, an important mechanistic component of overall beta-AR modulation of EE, is not related to this beta(2)-AR polymorphism in healthy humans. This may be explained in part by a lack of association between this gene variant and tonic SNS activity.  相似文献   

6.
We tested the hypothesis that resting metabolic rate (RMR) declines with age in physically active men (endurance exercise > or =3 times/wk) and that this decline is related to weekly exercise volume (h/wk) and/or daily energy intake. Accordingly, we studied 137 healthy adult men who had been weight stable for > or =6 mo: 32 young [26 +/- 1 (SE) yr] and 34 older (62 +/- 1 yr) sedentary males (internal controls); and 39 young (27 +/- 1 yr) and 32 older (63 +/- 2 yr) physically active males (regular endurance exercise). RMR was measured by indirect calorimetry (ventilated hood system) after an overnight fast and approximately 24 h after exercise. Because RMR is related to fat-free mass (FFM; r = 0.76, P < 0.001, current study), FFM was covaried to adjust RMR (RMR(adj)). RMR(adj) was lower with age in both the sedentary (72.0 +/- 2.0 vs. 64.0 +/- 1.3 kcal/h, P < 0.01) and the physically active (76.6 +/- 1.1 vs. 67.9 +/- 1.2 kcal/h, P < 0.01) males. In the physically active men, RMR(adj) was related to both exercise volume (no. of h/wk, regardless of intensity; r = 0.56, P < 0.001) and estimated energy intake (r = 0.58, P < 0.001). Consistent with these relations, RMR(adj) was not significantly different in subgroups of young and older physically active men matched either for exercise volume (h/wk; n = 11 each) or estimated energy intake (kcal/day; n = 6 each). These results indicate that 1) RMR, per unit FFM, declines with age in highly physically active men; and 2) this decline is related to age-associated reductions in exercise volume and energy intake and does not occur in men who maintain exercise volume and/or energy intake at a level similar to that of young physically active men.  相似文献   

7.
The aim of this study was to determine the effects of exercise at different intensities on 24-h energy expenditure (EE) and substrate oxidation. Sixteen adults (8 men and 8 women) were studied on three occasions [sedentary day (Con), a low-intensity exercise day (LI; 400 kcal at 40% of maximal oxygen consumption) and a high-intensity exercise day (HI; 400 kcal at 70% of maximal oxygen consumption)] by using whole room indirect calorimetry. Both 24-h EE and carbohydrate oxidation were significantly elevated on the exercise days (Con < LI = HI), but 24-h fat oxidation was not different across conditions. Muscle enzymatic profile was not consistently related to 24-h fat or carbohydrate oxidation. With further analysis, it was found that, compared with men, women sustained slightly higher rates of 24-h fat oxidation (mg x kg FFM(-1) x min(-1)) and had a muscle enzymatic profile favoring fat oxidation. It is concluded that exercise intensity has no effect on 24-h EE or nutrient oxidation. Additionally, it appears that women may sustain slightly greater 24-h fat oxidation rates during waking and active periods of the day.  相似文献   

8.
We sought to determine if decrements in the mass of fat-free body mass (FFM) and other lean tissue compartments, and related changes in protein metabolism, are appropriate for weight loss in obese older women. Subjects were 14 healthy weight-stable obese (BMI > or =30 kg/m(2)) postmenopausal women >55 yr who participated in a 16-wk, 1, 200 kcal/day nutritionally complete diet. Measures at baseline and 16 wk included FFM and appendicular lean soft tissue (LST) by dual-energy X-ray absorptiometry; body cell mass (BCM) by (40)K whole body counting; total body water (TBW) by tritium dilution; skeletal muscle (SM) by whole body MRI; and fasting whole body protein metabolism through L-[1-(13)C]leucine kinetics. Mean weight loss (+/-SD) was 9.6+/-3.0 kg (P<0.0001) or 10.7% of initial body weight. FFM decreased by 2.1+/-2.6 kg (P = 0.006), or 19.5% of weight loss, and did not differ from that reported (2.3+/-0.7 kg). Relative losses of SM, LST, TBW, and BCM were consistent with reductions in body weight and FFM. Changes in [(13)C]leucine flux, oxidation, and synthesis rates were not significant. Follow-up of 11 subjects at 23.7 +/-5.7 mo showed body weight and fat mass to be below baseline values; FFM was nonsignificantly reduced. Weight loss was accompanied by body composition and protein kinetic changes that appear appropriate for the magnitude of body mass change, thus failing to support the concern that diet-induced weight loss in obese postmenopausal women produces disproportionate LST losses.  相似文献   

9.
We determined whether activity energy expenditure (AEE, from doubly labeled water and indirect calorimetry) or physical activity [7-day physical activity recall (PAR)] was more related to adiposity and the validity of PAR estimated total energy expenditure (TEE(PAR)) in prepubertal and pubertal boys (n = 14 and 15) and girls (n = 13 and 18). AEE, but not physical activity hours, was inversely related to fat mass (FM) after accounting for the fat-free mass, maturation, and age (partial r = -0.35, P < or = 0.01). From forward stepwise regression, pubertal maturation, AEE, and gender predicted FM (r(2) = 0.36). Abdominal visceral fat and subcutaneous fat were not related to AEE or activity hours after partial correlation with FM, maturation, and age. When assuming one metabolic equivalent (MET) equals 1 kcal. kg body wt(-1). h(-1), TEE(PAR) underestimated TEE from doubly labeled water (TEE bias) by 555 kcal/day +/- 2 SD limits of agreement of 913 kcal/day. The measured basal metabolic rate (BMR) was >1 kcal. kg body wt(-1). h(-1) and remained so until 16 yr of age. TEE bias was reduced when setting 1 MET equal to the measured (bias = 60 +/- 51 kcal/day) or predicted (bias = 53 +/- 50 kcal/day) BMR but was not consistent for an individual child (+/- 2 SD limits of agreement of 784 and 764 kcal/day, respectively) or across all maturation groups. After BMR was corrected, TEE bias remained greatest in the prepubertal girls. In conclusion, in children and adolescents, FM is more strongly related to AEE than activity time, and AEE, pubertal maturation, and gender explain 36% of the variance in FM. PAR should not be used to determine TEE of individual children and adolescents in a research setting but may have utility in large population-based pediatric studies, if an appropriate MET value is used to convert physical activity data to TEE data.  相似文献   

10.
Insulin resistance (IR) is typically more severe in obese individuals with type 2 diabetes (T2DM) than in similarly obese non-diabetics but whether there are group differences in body composition and whether such differences contribute to the more severe IR of T2DM is uncertain. DEXA and regional CT imaging were conducted to assess adipose tissue (AT) distribution and fat content in liver and muscle in 67 participants with T2DM (F39/M28, age 60 +/- 7 yr, BMI 34 +/- 3 kg/m(2)) and in 35 similarly obese, non-DM volunteers (F20/M15, age 55 +/- 8 yr, BMI 33 +/- 2 kg/m(2)). A biopsy of subcutaneous abdominal AT was done to measure adipocyte size. A glucose clamp was performed at an insulin infusion of 80 mU x min(-1) x m(-2). There was more severe IR in T2DM (6.1 +/- 2.3 vs. 9.9 +/- 3.3 mg x min(-1) x kg FFM(-1); P < 0.01). Group comparisons of body composition parameters was performed after adjusting for the effect of age, gender, race, height and total fat mass (FM). T2DM was associated with less leg FM (-1.2 +/- 0.4 kg, P < 0.01), more trunk FM (+1.1 +/- 0.4 kg, P < 0.05), greater hepatic fat (P < 0.05), and more subfascial adipose tissue around skeletal muscle (P < 0.05). There was a significant group x sex interaction for VAT (P < 0.01), with greater VAT in women with T2DM (P < 0.01). Mean adipocyte size (AS) did not significantly differ across groups, and smaller AS was associated with increased leg FM, whereas larger AS was related to more trunk FM (both P < 0.05). Group differences in IR were less after adjusting for group differences in leg FM, trunk FM, and hepatic fat, but these adjustments only partially accounted for the greater severity of IR in T2DM. In summary, T2DM, compared with similarly obese nondiabetic men and women, is associated with less leg FM and greater trunk FM and hepatic fat.  相似文献   

11.
Evidence from rodent studies indicates that the beta-cell-derived neurohormone amylin exerts multiple effects on eating behavior, including reductions in meal size, intake of highly palatable foods, and stress-induced sucrose consumption. To assess the effect of amylin agonism on human eating behavior we conducted a randomized, blinded, placebo-controlled, multicenter study investigating the effects of the amylin analog pramlintide on body weight, 24-h caloric intake, portion sizes, "fast food" intake, and perceived control of eating in 88 obese subjects. After a 2-day placebo lead-in, subjects self-administered pramlintide (180 microg) or placebo by subcutaneous injection 15 min before meals for 6 wk without concomitant lifestyle modifications. Compared with placebo, pramlintide treatment elicited significant mean reductions from baseline in body weight on day 44 (-2.1 +/- 0.3 vs. +0.1 +/- 0.4%, P < 0.001), 24-h caloric intake (-990 +/- 94 vs. -243 +/- 126 kcal on day 3, P < 0.0001; -680 +/- 86 vs. -191 +/- 161 kcal on day 43, P < 0.01), portion sizes, and caloric intake at a "fast food challenge" (-385 +/- 61 vs. -109 +/- 88 kcal on day 44, P < 0.05). Pramlintide treatment also improved perceived control of eating, as demonstrated by a 45% placebo-corrected reduction in binge eating scores (P < 0.01). The results of this translational research study confirm in humans various preclinical effects of amylin agonism, demonstrating that pramlintide-mediated weight loss in obese subjects is accompanied by sustained reductions in 24-h food intake, portion sizes, fast food intake, and binge eating tendencies.  相似文献   

12.
The aim of the study was to examine the accuracy of fan-beam dual-energy X-ray absorptiometry (DEXA) for measuring total body fat-free mass (FFM) and leg muscle mass (MM) in elderly persons. Participants were 60 men and women aged 70-79 yr and with a body mass index of 17.5-39.8 kg/m(2). FFM and MM at four leg regions were measured by using DEXA (Hologic 4500A, v8.21). A four-compartment body composition model (4C) and multislice computed tomography (CT) of the legs were used as the criterion methods for FFM and MM, respectively. FFM by DEXA was positively associated with FFM by 4C (R(2) = 0.98, SE of estimate = 1.6 kg). FFM by DEXA was higher [53.5 +/- 12.0 (SD) kg] than FFM by 4C (51.6 +/- 11.9 kg; P < 0.001). No association was observed between the difference and the mean of the two methods. MM by DEXA was positively associated with CT at all four leg regions (R(2) = 0.86-0.96). MM by DEXA was higher than by CT in three regions. The results of this study suggest that fan-beam DEXA offers considerable promise for the measurement of total body FFM and leg MM in elderly persons.  相似文献   

13.
Seven nonobese adult females (40 +/- 8 years) were studied in a room calorimeter on a day that resistance exercise (REX) was performed (4 sets of 10 exercises) and on a nonexercise control day (CON). Twenty-four-hour energy expenditure (EE) on the REX day (mean +/- SD, 2,328 +/- 327 kcal.d(-1)) was greater than CON (2,001 +/- 369 kcal.d(-1), p < 0.001). The net increase in EE during and immediately after (30 minutes) exercise represented 76 +/- 12% of the total increase in 24-hour EE. Twenty four-hour RQ on the REX day (0.86 +/- 0.06) did not differ from CON (0.87 +/- 0.02). Twenty four-hour carbohydrate oxidation was elevated on the REX day, but 24-hour fat and protein oxidation were not different. Thus, in women, the increase in EE due to resistance exercise is largely seen during and immediately after the exercise. The increased energy demand is met by increased carbohydrate oxidation, with no increase in 24-hour fat oxidation.  相似文献   

14.
Resting metabolic rate (RMR) and body composition were measured in 44 initially nonoverweight girls at three time points relative to menarche: premenarche (Tanner stage 1 or 2), menarche (+/-6 mo), and 4 yr after menarche. Mean absolute RMR was 1,167, 1,418, and 1,347 kcal/day, respectively. Absolute RMR was statistically significantly higher at menarche than at 4 yr after menarche despite statistically significantly less fat-free mass (FFM) and fat mass (FM), suggesting an elevation in RMR around the time of menarche. The pattern of change in RMR, adjusted for FFM, log transformed FM, age, race, parental overweight, and two interactions (visit by parental overweight, parental overweight by FFM), was also considered. Adjusted RMR did not differ statistically between the visits for girls with two normal-weight parents. For girls with at least one overweight parent, adjusted RMR was statistically significantly lower 4 yr after menarche than at premenarche or menarche. Thus parental overweight may influence changes that occur in RMR during adolescence in girls.  相似文献   

15.
Circulating adiponectin is reduced in disorders associated with insulin resistance. This study was conducted to determine whether an exercise/diet intervention would alter adiponectin multimer distribution and adiponectin receptor expression in skeletal muscle. Impaired glucose-tolerant older (>60 yr) obese (BMI 30-40 kg/m(2)) men (n = 7) and women (n = 14) were randomly assigned to 12 wk of supervised aerobic exercise combined with either a hypocaloric (ExHypo, approximately 500 kcal reduction, n = 11) or eucaloric diet (ExEu, n = 10). Insulin sensitivity was determined by the euglycemic (5.0 mM) hyperinsulinemic (40 mU x m(-2) x min(-1)) clamp. Adiponectin multimers [high (HMW), middle (MMW), and low molecular weight (LMW)] were measured by nondenaturing Western blot analysis. Relative quantification of adiponectin receptor expression through RT-PCR was determined from skeletal muscle biopsy samples. Greater weight loss occurred in ExHypo compared with ExEu subjects (8.0 +/- 0.6 vs. 3.2 +/- 0.6%, P < 0.0001). Insulin sensitivity improved postintervention in both groups (ExHypo: 2.5 +/- 0.3 vs. 4.4 +/- 0.5 mg x kg FFM(-1) x min(-1), and ExEu: 2.9 +/- 0.4 vs. 4.1 +/- 0.4 mg x kg FFM(-1) x min(-1), P < 0.0001). Comparison of multimer isoforms revealed a decreased percentage in MMW relative to HMW and LMW (P < 0.03). The adiponectin SA ratio (HMW/total) was increased following both interventions (P < 0.05) and correlated with the percent change in insulin sensitivity (P < 0.03). Postintervention adiponectin receptor mRNA expression was also significantly increased (AdipoR1 P < 0.03, AdipoR2 P < 0.02). These data suggest that part of the improvement in insulin sensitivity following exercise and diet may be due to changes in the adiponectin oligomeric distribution and enhanced membrane receptor expression.  相似文献   

16.
Changes in resting energy expenditure (EE) during weight loss are said to be greater than what can be expected from changes of body mass, i.e., fat mass (FM) and fat‐free mass (FFM) but controversy persists. The primary focus of this study was to investigate whether there is a greater than predicted decrease in resting EE during weight loss in a large sample size through a systematic review. The study data were weighted and a partial residual plot followed by a multiple regression analysis was performed to determine whether FM and FFM can predict the changes of resting EE after weight loss. Another subgroup of studies from which all necessary information was available was analyzed and compared against the Harris—Benedict (HB) prediction equation to determine whether the changes in resting EE were greater than what was expected. Subjects lost 9.4 ± 5.5 kg (P < 0.01) with a mean resting EE decline of 126.4 ± 78.1 kcal/day (P < 0.01). Changes in FM and FFM explained 76.5% and 79.3% of the variance seen in absolute resting EE at baseline and post‐weight loss, respectively (P < 0.01). Analysis of the 1,450 subject subgroup indicated an ~29.1% greater than predicted decrease in resting EE when compared to the HB prediction equation (P < 0.01). This analysis does not support the notion of a greater than predicted decrease in resting EE after weight loss.  相似文献   

17.
The present study was designed as a randomized, double-blind placebo (Plc)-controlled study to determine the effect of 2 wk of growth hormone administration (GH-adm.) on energy expenditure (EE) and substrate oxidation in healthy humans. Sixteen young healthy men were divided into two groups. The study consisted of two 24-h measurements (indirect calorimetry), separated by 2 wk of either Plc or GH injections (6 IU/day). At baseline, no significant differences were observed between the two groups in any of the measured anthropometric, hormonal, or metabolic parameters, neither did the parameters change over time in the Plc group. GH-adm. resulted in a 4.4% increase in 24-h EE (P < 0.05) and an increase in fat oxidation by 29% (P < 0.05). However, a decrease in the respiratory quotient was only observed in the postabsorptive phase after an overnight fast (0.84 +/- 0.1 to 0.79 +/- 0.1, P < 0.05). Furthermore, lean body mass (LBM) was increased by GH-adm. only [62.8 +/- 2.5 kg (baseline) vs. 64.7 +/- 2.4 kg (after), P < 0.001]. In conclusion, GH-adm. increases 24-h EE, which may be partly explained by increased LBM. Furthermore, GH-adm. stimulates fat combustion, especially in the postabsorptive state.  相似文献   

18.
The purpose of this study was to investigate the effect of acute resistance exercise (RE) on lipolysis within adipose tissue and subsequent substrate oxidation to better understand how RE may contribute to improvements in body composition. Lipolysis and blood flow were measured in abdominal subcutaneous adipose tissue via microdialysis before, during, and for 5 h following whole body RE as well as on a nonexercise control day (C) in eight young (24 +/- 0.7 yr), active (>3 RE session/wk for at least 2 yr) male participants. Fat oxidation was measured immediately before and after RE via indirect calorimetry for 45 min. Dialysate glycerol concentration (an index of lipolysis) was higher during (RE: 200.4 +/- 38.6 vs. C: 112.4 +/- 13.1 micromol/l, 78% difference; P = 0.02) and immediately following RE (RE: 184 +/- 41 vs. C: 105 + 14.6 micromol/l, 75% difference; P = 0.03) compared with the same time period on the C day. Energy expenditure was elevated in the 45 min after RE compared with the same time period on the C day (RE: 104.4 +/- 6.0 vs. C: 94.5 +/- 4.0 kcal/h, 10.5% difference; P = 0.03). Respiratory exchange ratio was lower (RE: 0.71 +/- 0.004 vs. C: 0.85 +/- .03, 16.5% difference; P = 0.004) and fat oxidation was higher (RE: 10.2 +/- 0.8 vs. C: 5.0 +/- 1.0 g/h, 105% difference; P = 0.004) following RE compared with the same time period on the C day. Therefore, the mechanism behind RE contributing to improved body composition is in part due to enhanced abdominal subcutaneous adipose tissue lipolysis and improved whole body fat oxidation and energy expenditure in response to RE.  相似文献   

19.
The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P < 0.001). After the 12- but not the 48-h fast, insulin-stimulated AKT Ser(473) phosphorylation was greater in lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.  相似文献   

20.
We determined whether insulin therapy changes liver fat content (LFAT) or hepatic insulin sensitivity in type 2 diabetes. Fourteen patients with type 2 diabetes (age 51+/-2 yr, body mass index 33.1+/-1.4 kg/m2) treated with metformin alone received additional basal insulin for 7 mo. Liver fat (proton magnetic resonance spectroscopy), fat distribution (MRI), fat-free and fat mass, and whole body and hepatic insulin sensitivity (6-h euglycemic hyperinsulinemic clamp combined with infusion of [3-(3)H]glucose) were measured. The insulin dose averaged 75+/-10 IU/day (0.69+/-0.08 IU/kg, range 24-132 IU/day). Glycosylated hemoglobin A1c (Hb A1c) decreased from 8.9+/-0.3 to 7.4+/-0.2% (P<0.001). Whole body insulin sensitivity increased from 2.21+/-0.38 to 3.08+/-0.40 mg/kg fat-free mass (FFM).min (P<0.05). This improvement could be attributed to enhanced suppression of hepatic glucose production (HGP) by insulin (HGP 1.04+/-0.28 vs. 0.21+/-0.19 mg/kg FFM.min, P<0.01). The percent suppression of HGP by insulin increased from 72+/-8 to 105+/-11% (P<0.01). LFAT decreased from 17+/-3 to 14+/-3% (P<0.05). The change in LFAT was significantly correlated with that in hepatic insulin sensitivity (r=0.56, P<0.05). Body weight increased by 3.0+/-1.1 kg (P<0.05). Of this, 83% was due to an increase in fat-free mass (P<0.01). Fat distribution and serum adiponectin concentrations remained unchanged while serum free fatty acids decreased significantly. Conclusions: insulin therapy improves hepatic insulin sensitivity and slightly but significantly reduces liver fat content, independent of serum adiponectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号