首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosaminoglycans of human cultured normal glial and malignant glioma cells were studied. [35S]Sulphate or [3H]glucosamine added to the culture medium was incorporated into glycosaminoglycans; labelled glycosaminoglycans were isolated by DEAE-cellulose chromatography or gel chromatography. A simple procedure was developed for measurement of individual sulphated glycosaminoglycans in cell-culture fluids. In normal cultures the glycosaminoglycans of the pericellular pool (trypsin-susceptible material), the membrane fraction (trypsin-susceptible material of EDTA-detached cells) and the substrate-attached material consisted mainly of heparan sulphate. The intra- and extra-cellular pools showed a predominance of dermatan sulphate. The net production of hyaluronic acid was low. The accumulation of 35S-labelled glycosaminoglycans in the extracellular pool was essentially linear with time up to 72h. The malignant glioma cells differed in most aspects tested. The total production of glycosaminoglycans was much greater owing to a high production of hyaluronic acid and hyaluronic acid was the major cell-surface-associated glycosaminoglycan in these cultures. Among the sulphated glycosaminoglycans chondroitin sulphate, rather than heparan sulphate, was the predominant species of the pericellular pool. This was also true for the membrane fraction and substrate-attached material. Furthermore, the accumulation of extracellular 35S-labelled glycosaminoglycans was initially delayed for several hours and did not become linear with time until after 24 h of incubation. The glioma cells produced little dermatan sulphate and the dermatan sulphate chains differed from those of normal cultures with respect to the distribution of iduronic acid residues. The observed differences between normal glial and malignant glioma cells were not dependent on cell density; rather they were due to the malignant transformation itself.  相似文献   

2.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

3.
Abstract— The uronic acid containing glycosaminoglycans (GAGs) were isolated from the brains of 1-year-old and 4-year-old kwashiorkor children and characterised by constituent analyses. A marked reduction is the total GAG concentration of brain was noticed in both cases of kwashiorkor. In the 1-year-old kwashiorkor brain, hyaluronic acid is the most predominant GAG (73.5 per cent) whereas heparan sulphate, chondroitin sulphates and low sulphated chondroitin sulphate constituted less than 10 per cent. In the 4-year-old kwashiorkor brain, the proportion of hyaluronic acid was 27.5 per cent, low sulphated chondroitin sulphate 31.2 per cent, chondroitin sulphates 28.3 per cent and heparan sulphate 10 per cent. This marked reduction in the concentration as well as qualitative changes in GAG in protein-calorie malnutrition as compared to the normal is discussed in relation to brain function.  相似文献   

4.
Sulphated glycosaminoglycans have been analysed in cloned bovine aortic endothelial cells cultured on collagen gels after incubation with [3H]glucosamine and Na2(35)SO4. Radioactive products were analysed in the culture medium, in sequential collagenase and trypsin extracts of the cell monolayer and the associated extracellular matrix, and in the remaining viable cells. Heparan sulphate and chondroitin sulphate were found in each compartment: the heparan sulphate had a low degree of sulphation (approximately 0.4 N-sulphate and 0.2 O-sulphate groups per disaccharide unit on average). In the nitrous acid scission products of heparan sulphate, O-sulphated substituents were confined to disaccharide and tetrasaccharide fragments, indicating that local regions of the chain (which might be susceptible to excission by the platelet endoglycosidase) are highly sulphated. Only minor structural differences in heparan sulphate were observed between the various compartments. In contrast the chondroitin sulphate found in the collagenase extract had a higher iduronic acid content than corresponding material in the trypsin extract and the culture medium, indicating that collagenase and trypsin may extract glycosaminoglycans from different regions of the extracellular and pericellular matrix.  相似文献   

5.
Mouse 3T3 cells and their Simian Virus 40-transformed derivatives (3T3SV) were used to assess the relationship of transfromation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan (GAG). Glucosamine- and galactosamine- containing GAG were labeled equivalently by [3H=A1-glucose regardless of culture type, allowing incorporation into the various GAG to be compared under all conditions studied. Three components of each culture type were examined: the cells, which contain the bulk of newly synthesized GAG and are enriched in chondroitin sulfate and heparan sulfate; cell surface materials released by trypsin, which contain predominantly hyaluronic acid; and the media , which contain predominantly hyaluronic acid and undersulfated chondroitin sulfate. Increased cell density and viral transformation reduce incorporation into GAG relative to the incorporation into other polysaccharides. Transformation, however, does not substantially alter the type or distribution of newly synthesized GAG; the relative amounts and cellular distributions were very similar in 3T3 and 3T3SV cultures growing at similar rates at low densities. On the other hand, increased cell density as well as density-dependent growth inhibition modified the type and distribution of newly synthesized GAG. At high cell densities both cell types showed reduced incorporation into hyaluronate and an increase in cellular GAG due to enhanced labeling of chondroitin sulfate and heparan sulfate. These changes were more marked in confluent 3T3 cultures which also differed in showing substantially more GAG label in the medium and in chondroitin-6-sulfate and heparan sulfate at the cell surface. Since cell density and possibly density- dependent inhibition of growth but not viral transformation are major factors controlling the cellular distribution and type of newly synthesized GAG, differences due to GAG's in the culture behavior of normal and transformed cells may occur only at high cell density. The density-induced GAG alterations most likely involved are increased condroitin-6-sulfate and heparan sulfate and decreased hyaluronic acid at the cell surface.  相似文献   

6.
Confluent monolayer cultures of rabbit corneal endothelial and stromal cells were incubated independently with [35S]sulphate and [3H]glucosamine for 3 days. AFter incubation, labelled glycosaminoglycans were isolated from the growth medium and from a cellular fraction. These glycosaminoglycans were further characterized by DEAE-cellulose column chromatography and by sequential treatment with various glycosamino-glycan-degrading enzymes. Both endothelial and stromal cultures synthesized hyaluronic acid as the principal product. The cell fraction from the stromal cultures, however, had significantly less hyaluronic acid than that from the endothelial cultures. In addition, both types of cells synthesized a variety of sulphated glycosaminoglycans. The relative amounts of each sulphated glycosaminoglycan in the two cell lines were similar, with chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate as the major components. Heparan sulphate was present in smaller amounts. Keratan sulphate was also identified, but only in very small amounts (1-3%). The presence of dermatan sulphate and the high content of hyaluronic acid are similar to the pattern of glycosaminoglycans seen in regenerating or developing tissues, including cornea.  相似文献   

7.
Administration of (D+) catechin (100 mg/kg body wt) to rats resulted in an increase in the amount of total sulphated glycosaminoglycans (GAG) in liver. The increase was more pronounced in the case of heparan sulphate than chondroitin sulphate and dermatan sulphate. The liver slices prepared from catechin-treated rats showed a significant increase in the rate of incorporation of 35S-sulphate into GAG. Similarly there was a concentration-dependent increase in the rate of 35S-sulphate incorporation into GAG by normal liver slices in presence of catechin in vitro. Susceptibility to nitrous acid degradation and chondroitinase ABC digestion showed that more than 80% of the GAG labelled in vivo with 35S-sulphate, was heparan sulphate and about 10% chondroitin sulphate and dermatan sulphate. Gel filtration of the 35S-labelled material isolated from livers of normal and catechin-treated animals over sephacryl S-300 did not show any difference probably excluding the possibility of free GAG chains initiated on catechin or any of its metabolites in vivo. These results indicate that catechin stimulates the synthesis of sulphated GAG, particularly heparan sulphate in liver.  相似文献   

8.
The polycation, poly(l-lysine), repressed the synthesis of glycosaminoglycans in secondary cultures of chick embryo skin fibroblasts and caused sequestration of glycosaminoglycans around the cells. The synthesis of chondroitin sulphate, dermatan sulphate, hyaluronic acid and a fourth component, thought to be heparan sulphate, were all inhibited to the same extent but the sequestration of the sulphated polymers was greater than that of the unsulphated. The sequestered material was retained around and not within the cells. Incubations with the polyanion, poly(l-glutamate), showed a slight stimulation of glycosaminoglycan synthesis and in these and control incubations (no additions to medium), most of the glycosaminoglycan synthesised appeared in the culture medium. The subsequent addition of poly(l-glutamate) to incubations containing poly(l-lysine) reversed the inhibitory and sequestering effect of the polycation. It was concluded that the inhibition of synthesis by poly(l-lysine) was either a direct effect of poly(l-lysine) on the cell membrane or a result of the high local pericellular concentration of sequestered proteoglycan.  相似文献   

9.
—Metabolism of glycolipids and glycosaminoglycans were studied in rats in the acute stage of experimental allergic encephalomyelitis (EAE) using isolated brain perfusion technique. It was observed that there was a significant decrease in the concentration of cerebroside, sulphatide and GAG (hyaluronic acid and low sulphated GAG) when compared to normal and pairfed control rats. The radioactive sulphate incorporation into the cerebroside sulphate and sulphated GAG was significantly higher in the case of rats in the acute stage of EAE than the normal and pairfed control rats.  相似文献   

10.
Summary— Normal and otosclerotic bone cells were cultured in vitro in serum-free medium to evaluate single glycosaminoglycan (GAG) class synthesis and secretion. Moreover, the degradative process was studied by inhibiting the lysosomal functions through the addition of ammonium chloride to the cultures, an ammine known to inhibit lysosomal degradation by neutralizing organelle activity. Otosclerotic bone cells accumulated a lower amount of GAG both in the cellular and extracellular pool compared to normal ones. The decrease was markedly higher for secreted GAG. Moreover a different pattern of single GAG class distribution was observed in the two cell types considered. In the medium of otosclerotic cells a percentage increase of hyaluronic acid (HA) and dermatan sulphate (DS) and a percentage decrease of heparan sulfate (HS) and chondroitin sulfate (CS) were observed compared to normal bone cells. Ammonium chloride had a lower effect on pathologic than on normal cells, indicating a decrease in the degradative process in otosclerotic bone cells. These results were also confirmed by the experiments on GAG uptake and degradation and by the dosage of enzymatic activity of two exoglycosidases. Since extracellular GAG composition influences bone deposition and mineralization, these data support the hypothesis that otosclerosis is the result of an error in the connective tissue matrix structure.  相似文献   

11.
The 14C-acetate metabolic labeling of glycosaminoglycans (GAGs) was used to investigate the effect of high glucose level on the production of hyaluronic acid (HA), heparan sulphate (HS), chondroitin sulphate (CS) and dermatan sulphate (DS) by human immortalized umbilical vein endothelial cells. It is demonstrated that 30 mM glucose decreased the accumulation of HS and increased the accumulation of CS and DS in the cell layer, pericellular matrix and conditioned medium in 48 h of incubation. The modulation of the overall metabolism of sulphated GAGs by high glucose is in contrast to the observed redistribution of HA from the conditioned medium to the pericellular matrix of endothelial cells. The preincubation at 30 mM glucose increased also the attachment of hyaluronidase-treated endothelial cells to HA-coated surface and had no effect on the cell attachment to poly-D-lysine, indicating the alterations of CD44 binding to immobilized HA. The treatment of endothelial cells with p-nitrophenyl-beta-D-xylopyranoside, which inhibits the coupling of CS to the core protein, attenuated high glucose-induced pericellular HA accumulation and decreased cell attachment to HA-coated surface. It is supposed the implication of CD44-related CS in the accumulation of pericellular HA by endothelial cells exposed to high glucose level.  相似文献   

12.
Normand  G; Hicks  D; Dreyfus  H 《Glycobiology》1998,8(12):1227-1235
Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth, but little is known with respect to their regulation through soluble neurotrophic factors. In the present study, we have addressed this issue using cell culture models of three distinct cell populations derived from young rat retinas, namely, purified M uller glia, pigmented epithelium, and neurons respectively. Cultures were maintained in chemically defined media in the presence or absence of either basic fibroblast or epidermal growth factor. In control glial and epithelial cultures, hyaluronic acid dominated the soluble GAG pool, with lesser contributions from dermatan sulfate, chondroitin sulfate, and heparan sulfate (in decreasing order). Retinal neuronal GAG were almost exclusively chondroitin sulfate (approximately 90%). Treatment of glial and epithelial cultures with either factor led to dose-dependent increases in especially hyaluronic acid synthesis (a maximum 6-fold increase relative to control levels), with smaller but consistent changes in chondroitin sulfate. Similar treatment of retinal neurons did not lead to any changes in GAG synthesis. These data indicate that glia and pigment epithelia are the principal sources of GAG components in retina at least in vitro, and that endogenous neurotrophic growth factors can greatly modify GAG synthesis in these two retinal cell populations. Such data suggest that a delicate balance may exist between growth factor availability and glycoconjugate metabolism in vivo, participating in normal or pathological states of the retina.   相似文献   

13.
We have examined the ability of cultured human glioma cells to elicit allogeneic cytolytic lymphocyte responses in vitro in order to delineate properties of glioma cells that may contribute to their ability to escape cellular immune attack. When glioma cells were cultured together with allogeneic peripheral blood mononuclear cells (PBMC) in mixed lymphocyte-tumor cultures (MLTC), it was observed that cells from eight of 12 glioma lines were surrounded by clear pericellular "halos," which appeared to impede contact between PBMC and the glioma cells. Enzymatic, histochemical, and immunochemical studies indicated that these halos represented glycosaminoglycan (GAG) coats that contained hyaluronic acid (HA) as a major constituent. Electron microscopic studies demonstrated the presence of many thin microvillous processes spanning the width of the halos. The presence of GAG coats around glioma cells in MLTC reduced the generation of cytolytic T lymphocytes specific for antigens on the glioma cells. Likewise, these cell coats decreased the lysis of glioma cells by cytolytic lymphocytes, once generated. The production of thick coats of GAG by glioma cells was induced by interaction of glioma cells with a nondialyzable factor produced by PBMC in culture. This factor did not cause glioma cells to release increased amounts of HA into the medium, but rather increased the production of HA that remained associated with the glioma cell surface. The formation of thick, protective GAG coats by glioma cells as a result of their interaction with the PBMC-derived factor constitutes a nonspecific suppressor mechanism that may contribute to the ability of this class of human solid tumors to evade cellular immune attack.  相似文献   

14.
It was found that both normal human myometrium and uterine leiomyoma contain several glycosaminoglycans. In contrast to many normal and tumour tissues the amount of hyaluronic acid is very low and the proportional amount of sulphated glycosaminoglycans is distinctly higher. It is of interest that heparan sulphate is the major glycosaminoglycan component both in normal myometrium, and in leiomyoma. The amount of hyaluronic acid in myometrium and in the leiomyoma is very low. No significant change in hyaluronate content was observed during the tumour growth. In contrast to that the amount of some sulphated glycosaminoglycans (heparan sulphate, keratan sulphate, chondroitin sulphates and heparin) distinctly increased. It is suggested that some of the GAGs participate in the creation of a storage depot for biologically active molecules (growth factors, enzymes) which are thereby stabilized and protected. Hydrolytic degradation of some GAGs may result in the release of some cytokines which may promote the tumour growth and stimulate collagen biosynthesis by tumour cells.  相似文献   

15.
Plasma diamine oxidase (DAO) values are enhanced by intravenous injection of heparin which releases the enzyme, synthesized in small bowel enterocytes, from binding sites located on endothelial cells of the intestinal microvasculature. Intestinal DAO, in analogy with lipoprotein lipase (another heparin-released enzyme), is believed to be electrostatically linked to endothelial binding sites composed of a glycosaminoglycan (GAG) which is presumably heparan sulphate, but the complete mechanism of enzyme release is not known. In this study we assayed in rats the DAO-releasing capability of heparan sulphate, dermatan sulphate, chondroitin sulphate A and hyaluronic acid, all heparin related compounds. Heparan sulphate, a compound with the same hexosamine as heparin but with a lower concentration of sulphated iduronic acid, induced a very high release of DAO (3-fold less than heparin), while the other tested GAGs, composed of higher proportions of non sulphated uronic acid and with galactosamine instead of glucosamine, induced a significantly lower release. In rats treated with 60 mg heparan sulphate the significant decrease in ileal mucosal DAO activity indicates that, in analogy with heparin, the high plasma enzymatic activity induced is of enterocytic origin. It is suggested that the high charge density of the compounds tested, due to the degree of sulphatation, is the decisive factor in promoting the release of intestinal DAO.  相似文献   

16.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

17.
Synopsis Disaggregated foetal mouse brain tissue cultures were examined for glycosaminoglycans using Alcian Blue and periodic acid-Schiff staining techniques. It was found that spongioblasts (neuron and glial cell precursors) were rich in sulphated glycosaminoglycans, while astrocytes contained little or no sulphated polymers. The chief acid glycosaminoglycans of the brain reportedin vivo, hyaluronic acid, chondroitin sulphate and sialic acid-bearing polymers, were not demonstrated in the mouse brain cultures. There was a decline in glycosaminoglycan content over two weeks in culture, but during the corresponding periodin vivo an increase has been reported. These deficiencies are possibly correlated with the failure of the cultures to myelinate.  相似文献   

18.
R Kapoor  S Bourier  P Prehm 《FEBS letters》1983,152(2):183-186
Glycosaminoglycans were analysed from skin fibroblasts with osteogenesis imperfecta (OI) IIA and IIB. The content of sulphated glycosaminoglycans was greatly increased over age-matched controls and to a lesser extent with respect to older age control. Dermatan sulphate in comparison with older control was unaltered in the cells of OI IIA and IIB. The concentration of heparan sulphate was higher in the cells than in the medium, whereas hyaluronic acid, chondroitin sulphate and dermatan sulphate content was higher in the medium. The level of hyaluronic acid was greatly elevated in the medium of OI IIB with respect to both controls.  相似文献   

19.
The effect of methylenebisphosphonic acid (MBPA) on glycosaminoglycan metabolism, adhesive and proliferative properties of human endothelial cells has been investigated. It was demonstrated that MBPA (100 microM) inhibited the synthesis of all studied groups of glycosaminoglycans, but promoted the accumulation of heparan sulphate in endothelial pericellular matrix. Simultaneously, the redistribution of hyaluronic acid from pericellular matrix to the conditioned medium was observed. The decreased adhesion of endothelial cells to immobilized hyaluronic acid was not mediated by the alterations of CD44 expression. It was also demonstrated that MBPA affected the proliferative properties of endothelial cells. The alterations of glycosaminoglycan metabolism are considered to be involved in antiangiogenic effects of MBPA.  相似文献   

20.
Rat liver cells grown in primary cultures in the presence of [35S]sulphate synthesize a labelled heparan sulphate-like glycosaminoglycan. The characterization of the polysaccharide as heparan sulphate is based on its resistance to digestion with chondroitinase ABC or hyaluronidase and its susceptibility to HNO2 treatment. The sulphate groups (including sulphamino and ester sulphate groups) are distributed along the polymer in the characteristic block fashion. In 3H-labelled heparan sulphate, isolated after incubation of the cells with [3H]galactose, 40% of the radioactive uronic acid units are l-iduronic acid, the remainder being d-glucuronic acid. The location of heparan sulphate at the rat liver cell surface is demonstrated; part of the labelled polysaccharide can be removed from the cells by mild treatment with trypsin or heparitinase. Further, a purified plasma-membrane fraction isolated from rats previously injected with [35S]sulphate contains radioactively labelled heparan sulphate. A proteoglycan macromolecule composed of heparan sulphate chains attached to a protein core can be solubilized from the membrane fraction by extraction with 6m-guanidinium chloride. The proteoglycan structure is degraded by treatment with papain, Pronase or alkali. The production of heparan [35S]sulphate by rat liver cells incubated in the presence of [35S]sulphate was followed. Initially the amount of labelled polysaccharide increased with increasing incubation time. However, after 10h of incubation a steady state was reached where biosynthetic and degradative processes were in balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号