首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The localization of the binding sites of the different ligands on the constitutive subunits of yeast phenylalanyl-tRNA synthetase was undertaken using a large variety of affinity and photoaffinity labelling techniques. The RNAPhe was cross-linked to the enzyme by non-specific ultraviolet irradiation at 248 nm, specific irradiation in the wye base absorption band (315 nm), irradiation at 335 nm, in the absorption band of 4-thiouridine (S4U) residues introduced in the tRNA molecule, or by Schiff's base formation between periodate-oxidized tRNAPhe (tRNAPheox) and the protein. ATP was specifically incorporated in its binding site upon photosensitized irradiation. The amino acid could be linked to the enzyme upon ultraviolet irradiation, either in the free state, engaged in the adenylate or bound to the tRNA. The tRNA, the ATP molecule and the amino acid linked to the tRNA were found to interact exclusively with the beta subunit (Mr 63000). The phenylalanine residue, either free or joined to the adenylate, could be cross-linked with equal efficiency to eigher type of subunit, suggesting that the amino acid binding site is located in a contact area between the two subunits. The Schiff's base formation between tRNAPheox and the enzyme shows the existence of a lysyl group close to the binding site for the 3'-terminal adenosine of tRNA. This result was confirmed by the study of the inhibition of yeast phenylalanyl-tRNA synthetase with pyridoxal phosphate and the 2',3'-dialdehyde derivative of ATP, oATP.  相似文献   

3.
4.
Recent experiments showed that a single base pair (G3:U70) in the amino acid acceptor helix is a major determinant for the identity of Escherichia coli alanine transfer RNA. Experiments reported here show that bound alanine tRNA synthetase protects (from ribonuclease attack) seven consecutive phosphodiester linkages on the 3'-side of the acceptor-T psi C helix (phosphates 65-71) and a few additional sites that are in scattered locations. There is no evidence for interaction of the enzyme with the anticodon, a sequence which can be varied without effect on recognition by alanine tRNA synthetase.  相似文献   

5.
Sodium boro[3H]hydride reduction of pig kidney 3,4 dihydroxyphenylalanine decarboxylase followed by complete hydrolysis of the enzyme produced epsilon-[3H]pyridoxyllysine. Degradation of this material to 4'-[3H]pyridoxamine and stereochemical analysis with apoaspartate aminotransferase showed that the re side at C-4' of the coenzyme is exposed to solvent. In order to determine the face exposed to the solvent in the external Schiff's base, attempts to trap reaction intermediates were made by reduction with sodium boro [3H]hydride of the holoenzyme in the presence of various substrates or substrate analogs. In all cases, covalently bound radioactive material was found which was identified as epsilon-N-pyridoxyllysine. These results suggest that the internal Schiff's base is in mobile equilibrium with the external Schiff's base and that sodium borohydride reduction displaces this equilibrium, resulting in complete reduction of the internal Schiff's base.  相似文献   

6.
W T Miller  Y M Hou  P Schimmel 《Biochemistry》1991,30(10):2635-2641
A single G3.U70 base pair in the acceptor helix is the major determinant for the identity of alanine transfer RNAs (Hou & Schimmel, 1988). Introduction of this base pair into foreign tRNA sequences confers alanine acceptance on them. Moreover, small RNA helices with as few as seven base pairs can be aminoacylated with alanine, provided that they encode the critical base pair (Francklyn & Schimmel, 1989). Alteration of G3.U70 to G3.C70 abolishes aminoacylation with alanine in vivo and in vitro. We describe here the mutagenesis and selection of a single point mutation in Escherichia coli Ala-tRNA synthetase that compensates for a G3.C70 mutation in tRNAAla. The mutation maps to a region previously implicated as proximal to the acceptor end of the bound tRNA. In contrast to the wild-type enzyme, the mutant charges small RNA helices that encode a G3.C70 base pair. However, the mutant enzyme retains specificity for alanine tRNA and can serve as the sole source of Ala-tRNA synthetase in vivo. The results demonstrate the capacity of an aminoacyl-tRNA synthetase to compensate through a single amino acid substitution for mutations in the major determinant of its cognate tRNA.  相似文献   

7.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

8.
Tryptophan synthase alpha 2 beta 2 complex containing [4'-3H]pyridoxal phosphate was reduced with sodium borohydride in the presence of various substrates and analogs in an attempt to trap reaction intermediates. Reduction in the presence of L-serine gave noncovalently bound radioactive material which was identified as phosphopyridoxylalanine, presumably resulting from reduction of the intermediate Schiff's base formed between pyridoxal phosphate and alpha-aminoacrylate. The tritium in this compound was located in the pro-R position at C-4', indicating that reduction of the Schiff's base double bond had occurred on the Si face at C-4'. On the other hand, analysis of phosphopyridoxyllysine obtained by hydrolysis of the reduced [3H]pyridoxal-P-alpha 2 beta 2 protein showed that the internal Schiff's base had been reduced on the C-4' Re face, suggesting a cofactor reorientation upon substrate binding. Analysis of phosphopyridoxylalanine from a reduction of unlabeled alpha 2 beta 2 complex in the presence of (2S,3R)-[2,3-2H2]serine with tritiated sodium borohydride demonstrated the presence of tritium at C-4' (50%), C-2 (20%), and C-3 (30%). According to the configuration at C-3, reduction of the phosphopyridoxal-alpha-aminoacrylate Schiff's base has occurred from the same side of the molecule at C-4' and C-3.  相似文献   

9.
The sulfhydryl groups required for the catalytic activity of gramicidin S synthetase of Bacillus brevis and Escherichia coli isoleucyl tRNA synthetase were compared. In gramicidin S synthetase 2(GS 2), about four sulfhydryl groups react rapidly with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-ethylmaleimide (NEM), and are essential for gramicidin S formation in the presence of gramicidin S synthetase 1 (GS 1). These sulfhydryl groups are protected against DTNB and NEM reactions by the preincubation of GS 2 with amino acid substrates in the presence of ATP and MgCl2, like the sulfhydryl groups that react rapidly with DTNB or NEM and are required for the catalytic activity of GS 1 and isoleucyl tRNA synthetase. In GS 2, GS 1, and isoleucyl tRNA synthetase, the sulfhydryl group that reacts rapidly with NEM and is required for the catalytic activity is involved in the amino acid binding as a thioester. In isoleucyl tRNA synthetase, it is suggested that isoleucine may be transferred from the isoleucine thioester enzyme complex to tRNA by a mechanism similar to that proposed for gramicidin S synthetase.  相似文献   

10.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

11.
The rates of the cross-aminoacylation reactions of tRNAs(Met) catalyzed by methionyl-tRNA synthetases from various organisms suggest the occurrence of two types of tRNA(Met)/methionyl-tRNA synthetase systems. In this study, the tRNA determinants recognized by mammalian or E. coli methionyl-tRNA synthetases, which are representative members of the two types, have been examined. Like its prokaryotic counterpart, the mammalian enzyme utilizes the anticodon of tRNA as main recognition element. However, the mammalian cytoplasmic elongator tRNA(Met) species is not recognized by the bacterial synthetase, and both the initiator and elongator E. coli tRNA(Met) behave as poor substrates of the mammalian cytoplasmic synthetase. Synthetic genes encoding variants of tRNAs(Met), including the elongator one from mammals, were expressed in E. coli. tRNAs(Met) recognized by a synthetase of a given type can be converted into a substrate of an enzyme of the other type by introducing one-base substitutions in the anticodon loop or stem. In particular, a reduction of the size of the anticodon loop of cytoplasmic mammalian elongator tRNA(Met) from 9 to 7 bases, through the creation of an additional Watson-Crick pair at the bottom of the anticodon stem, makes it a substrate of the prokaryotic enzyme and decreases its ability to be methionylated by the mammalian enzyme. Moreover, enlarging the size of the anticodon loop of E. coli tRNA(Metm) from 7 to 9 bases, by disrupting the base pair at the bottom of the anticodon stem, renders the resulting tRNA a good substrate of the mammalian enzyme, while strongly altering its reaction with the prokaryotic synthetase. Finally, E. coli tRNA(Metf) can be rendered a better substrate of the mammalian enzyme by changing its U33 into a C. This modification makes the sequence of the anticodon loop of tRNA(Metf) identical to that of cytoplasmic initiator tRNA(Met).  相似文献   

12.
The kinetics of the interaction of tRNASer and seryl-tRNA synthetase from yeast as well as of tRNATyr and tyrosyl-tRNA synthetase from Escherichia coli have been investigated by temperature-jump experiments. It could be shown that complex formation proceeds in two distinct steps. This was demonstrated for both the first and the second binding site. The two-step mechanism was deduced from the characteristic concentration dependence of the relaxation times. Seryl-tRNA synthetase recombines with the first tRNA to form an intermediate complex (kI12, kI21), which is transformed in a fast reaction to the final 1:1 complex (kI23, kI32). At pH 7.2 with 0.1 M KCl the rate constants are: kI12 = 2.7 X 10(8) M-1 S-1; kI23, kI32). At pH 7.2 with 0.1 M KCl the rate constants are: kI12 = 2.7 x 10(8) M-1 S-1; kI21 = 220 S-1; kI23 = 760 S-1; kI32 = 330 S-1. The 1:1 complex can bind a second tRNA. At pH 7.2 without added salt the rate constants are: KII2 = 0.9 X 10(8) M-1 S-1; kII21 = 270 S-1; kII23 = 120 S-1; kII32 = 1250 S-1. The tyrosine-specific system behaves very similarly to the serine-specific system. Data are given for pH 7.2 (pH 6.0) for the binding of the second tRNA: kII12 = 1 X 10(8) (2.5 X 10(8)) M-1 S-1; kII21 = 470 (170) S-1; kII23 = 150 (530) S-1; kII32 = 1540 (720) S-1. The kinetic results are discussed in terms of their relevance to the recognition process and their relation to the anticooperative binding behaviour of tRNA to synthetase.  相似文献   

13.
M E Saks  J R Sampson 《The EMBO journal》1996,15(11):2843-2849
Aminoacylation rate determinations for a series of variant RNA minihelix substrates revealed that Escherichia coli seryl-tRNA synthetase (SerRS) recognizes the 1--72 through 5--68 base pairs of the E.coli tRNA(Ser) acceptor stem with the major recognition elements clustered between positions 2--71 and 4--69. The rank order of effects of canonical base pair substitutions at each position on kcat/Km was used to assess the involvement of major groove functional groups in recognition. Conclusions based on the biochemical data are largely consistent with the interactions revealed by the refined structure of the homologous Thermus thermophilus tRNA(Ser)-SerRS complex that Cusack and colleagues report in the accompanying paper. Disruption of an end-on hydrophobic interaction between the major groove C5(H) of pyrimidine 69 and an aromatic side chain of SerRS is shown to significantly decrease kcat/Km of a minihelix substrate. This type of interaction provides a means by which proteins can recognize the binary information of 'degenerate' sequences, such as the purine-pyrimidine base pairs of tRNA(Ser). The 3--70 base pair is shown to contribute to recognition by SerRS even though it is not contacted specifically by the protein. The latter effect derives from the organization of the specific contacts that SerRS makes with the neighboring 2--71 and 4--69 acceptor stem base pairs.  相似文献   

14.
1. Phenol was effectively removed from aqueous extracts of RNA by chromatography on Sephadex G-50. 2. Elution of tRNA from Sephadex G-50 columns at pH7.6 was shown to remove 91% of the endogenously bound amino acids. 3. tRNA prepared without recourse to ethanolic precipitation was capable of accepting much greater amounts of amino acids than could redissolved samples of precipitated tRNA. 4. Aminoacyl-tRNA synthetase enzymes were partially purified with calcium phosphate gel. Elution of enzymes from the gel at pH6.5 yielded a fraction having phenylalanine- and alanine-charging activity, but no aspartate-, lysine- or proline-charging activity, whereas elution at pH7.6 gave a fraction having aspartate-, lysine- and proline-charging activity but no phenylalanine- or alanine-charging activity. 5. By using partially synthetase enzymes and tRNA eluted from DEAE-Sephadex A-50 columns, 52% of the theoretical maximum of aminoacyl-tRNA synthesis was obtained in vitro.  相似文献   

15.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

16.
17.
Transfer RNA (tRNA) identify is maintained by the highly specific interaction of a few defined nucleotides or groups of nucleotides, called identity elements, with the cognate aminoacyl-tRNA synthetase, and by nonproductive interactions with the other 19 aminoacyl-tRNA synthetases. Most tRNAs have a set of identity elements in at least two locations, commonly in the anticodon loop or in the acceptor stem, and at the discriminator base position 73. We have used T7 RNA polymerase transcribed tRNAs to demonstrate that the sole replacement of the discriminator base A73 of human tRNA(Leu) with the tRNA(Ser)-specific G generates a complete identity switch to serine acceptance. The reverse experiment, the exchange of G73 in human tRNA(Ser) for the tRNA(Leu-specific A, causes a total loss of serine specificity without creating any leucine acceptance. These results suggest that the discriminator base A73 of human tRNA(Leu) alone protects this tRNA against serylation by seryl-tRNA synthetase. This is the first report of a complete identity switch caused by an exchange of the discriminator base alone.  相似文献   

18.
Interactions of Escherichia coli isoleucyl- and glutamyl-tRNA synthetases and their cognate tRNAs were analyzed by phosphate-alkylation mapping with N-nitroso-N-ethylurea and/or by 1H-NMR analysis. When E. coli tRNA(Ile) was bound with isoleucyl-tRNA synthetase, many of the phosphate groups in the anticodon loop and stem and in the D-stem were protected from alkylation. This result is consistent with that of analysis of imino proton resonances due to the secondary and tertiary base pairs. These analyses also suggested that the L-shaped tertiary structure of tRNA(Ile) is distorted upon complex formation with IleRS because of disruption of some tertiary base pairs. In the case of E. coli tRNA(Glu), several phosphate groups in the D-stem and the variable loop were significantly protected by the cognate synthetase. These results indicate that the two tRNAs, unlike other tRNAs studied so far, have some of the "identity determinants" in the D-stem and/or in the anticodon stem.  相似文献   

19.
The influence of phenylalanyl-tRNA synthetase and seryl-tRNA synthetase on the conformation and structural kinetics of yeast tRNA Phe was investigated. Ethidium substituted for dihydrouracil at position 16 or 17 was used as a structural probe, showing the existence of three conformational states in tRNA. The distribution of states (T1, T2, T3) is changed only by the cognate synthetase towards T3 which probably is related to the X-ray structure. The binding of phenylalanyl-tRNA synthetase leads to an about 10-fold increase in the fast transition T1 in equilibrium or formed from T2 which has been assigned to changes in the anticodon loop conformation and to a 2-3 fold increase in the slow transition which probably extends to other parts of the tRNA molecule. The observed rates for the transition T2 in equilibrium or formed from T3 are close to that observed for the transfer of the activated phenylalanine to tRNA Phe. This raises the possibility that the conformational transition in tRNA is the rate limiting step in the charging reaction.  相似文献   

20.
Guigou L  Mirande M 《Biochemistry》2005,44(50):16540-16548
Arginyl-tRNA synthetase (ArgRS) catalyzes formation of arginyl-adenylate in a tRNA-dependent reaction. Previous studies have revealed that conformational changes occur upon tRNA binding. In this study, we analyzed the sequence and structural features of tRNA that are essential to activate the catalytic center of mammalian arginyl-tRNA synthetase. Here, tRNA variants with different activator potential are presented. The three regions that are crucial for activation of ArgRS are the terminal adenosine, the D-loop, and the anticodon stem-loop of tRNA. The Add-1 N-terminal domain of ArgRS, which has the very unique property among aminoacyl-tRNA synthetases to interact with the D-loop in the corner of the convex side of tRNA, has an essential role in anchoring tRNA and participating in tRNA-induced amino acid activation. The results suggest that locking the acceptor extremity, the anticodon loop, and the D-loop of tRNA on the catalytic, anticodon-binding, and Add-1 domains of ArgRS also requires some flexibility of the tRNA molecule, provided by G:U base pairs, to achieve the productive conformation of the active site of the enzyme by induced fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号