首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Summary For the study of the interaction between oxidized cytochromec and phosphatidylinositide, two different model systems were used: (1) monolayers which were deposited after the method of Langmuir and Blodgett onto glass plates, and (2) bimolecular (“black”) membranes in aqueous phase. The amount of bound protein was determined with a sensitive spectrophotometer. It was found that at low ionic strength about 1013 cytochromec molecules per cm2 are bound to the lipid surface, which nearly corresponds to a densely packed monolayer. At high ionic strength (∼ 0.1m) or low pH (pH<3), the adsorbed protein layer becomes unstable. This result indicates that the interaction is mainly electrostatic. In accordance with this conclusion is the observation that the rate of adsorption is diffusion controlled; i.e., almost every protein molecule hitting the surface is bound. The cytochromec monolayer can be reduced by ascorbate. In contrast to ferrocytochromec in solution, the bound ferrocytochrome was found to be autoxidable.  相似文献   

2.
Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the back side ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.  相似文献   

3.
A newly constructed cell, which allows simultaneous measurements of optical and electrical properties, was used to study bimolecular black membranes composed of beef heart mitochondrial lipids and their interaction with cytochrome c. The results show that these highly charged membranes are stable only in relatively limited ranges of boundary conditions. In 0.1 n KCl their maximum direct current (dc) resistance is 7 X 10(8) Ohm cm2 +/- 10%; the series capacity at 1 kHz is 0.43 muF/cm2 +/- 3%; the entire thickness, determined by optical reflectivity, is 5.8 +/- 0.2 nm. The interaction between oxidized cytochrome c and these lipid membranes is primarily of electrostatic nature, and dependent on the presence of highly charged phospholipids, such as diphosphatidyl glycerol (cardiolipin) and phosphatidyl ethanolamine. The attachment of cytochrome c maximally causes a 2.5-fold increase in reflectivity, without any noticeable change in the capacity. This leads to a subsequent instability of the membrane (i.e., rupture) preceded by a rapid increase of the dc conductivity. This behavior is far less pronounced with reduced cytochrome c.  相似文献   

4.
Thermally denatured horse heart ferrocytochrome c (ferrocyt c) has been characterized using absorption spectroscopy, differential scanning calorimetry (DSC) and viscometry at pH 7.0. DSC experiments have yielded the transition temperature of denaturant-free ferrocyt c unfolding as 100.6±0.3 °C, indicating an extremely high stability of the protein. The presence of guanidine hydrochloride (GdnHCl) facilitated estimation of the structural features of thermally unfolded ferrocyt c. The stability of the protein, expressed by G D at 25 °C, is 59±5 kJ mol–1 (DSC) and 65±6 kJ mol–1 (absorption spectroscopy). An absorption spectrum of ferrocyt c demonstrates that the heme occurs in the high-spin state at extreme denaturing conditions (94 °C, 6.6 M GdnHCl). Absorption spectroscopy, using heme as a probe, shows that thermal denaturation of ferrocyt c occurs as a transition from a native low-spin (Met80/His18) to a high-spin disordered state with involvement of non-native, low-spin (bis-His) species.Abbreviations CD circular dichroism - cyt c cytochrome c - DSC differential scanning calorimetry - ferricyt c ferricytochrome c - ferrocyt c ferrocytochrome c - GdnHCl guanidine hydrochloride - NHE normal hydrogen electrode  相似文献   

5.
Summary This paper continues our studies of physico-chemical properties of vesicle-bound flavins. Based on previous results, an advanced model system was designed in order to study the mechanisms underlying bluelight-induced redox transport across artificial membranes. The lumen of single-shelled vesicles was charged with cytochromec, and amphiphilic flavin (AF1 3, AF1 10) was bound to the membrane. Upon bluelight irradiation redox equivalents are translocated from exogeneous 1e (EDTA)-and 2e (BH3CN) donors across the membrane finally reducing the trapped cytochromec both under aerobic and anaerobic conditions. The mechanisms involved are explored and evidence for the involvement of various redox states of oxygen, dihydroflavin and flavosemiquinone is presented.  相似文献   

6.
Cytochromesc andc 1 are essential components of the mitochondrial respiratory chain. In both cytochromes the heme group is covalently linked to the polypeptide chain via thioether bridges. The location of the two cytochromes is in the intermembrane space; cytochromec is loosely attached to the surface of the inner mitochondrial membrane, whereas cytochromec 1 is firmly anchored to the inner membrane. Both cytochromec andc 1 are encoded by nuclear genes, translated on cytoplasmic ribosomes, and are transported into the mitochondria where they become covalently modified and assembled. Despite the many similarities, the import pathways of cytochromec andc 1 are drastically different. Cytochromec 1 is made as a precursor with a complex bipartite presequence. In a first step the precursor is directed across outer and inner membranes to the matrix compartment of the mitochondria where cleavage of the first part of the presequence takes place. In a following step the intermediate-size form is redirected across the inner membrane; heme addition then occurs on the surface of the inner membrane followed by the second processing reaction. The import pathway of cytochromec is exceptional in practically all aspects, in comparison with the general import pathway into mitochondria. Cytochromec is synthesized as apocytochromec without any additional sequence. It is translocated selectively across the outer membrane. Addition of the heme group, catalyzed by cytochromec heme lyase, is a requirement for transport. In summary, cytochromec 1 import appears to follow a conservative pathway reflecting features of cytochromec 1 sorting in prokaryotic cells. In contrast, cytochromec has invented a rather unique pathway which is essentially non-conservative.  相似文献   

7.
Summary Excised roots from axenically grown sunflower seedlings reduced or oxidized exogenously added 2,6-dichlorophenolindophenol (DCIP), DCIP-sulfonate (DCIP-S), and cytochromec, and affected simultaneous H+/K+ net fluxes. Experiments were performed with nonpretreated living and CN-pretreated poisoned roots (control and CN-roots). CN-roots showed no H+/K+ net flux activity but still affected the redox state of the compounds tested. The hydrophobic electron acceptor DCIP decreased the rate of H+ efflux in control roots with extension of the maximum rate and optimal pH ranges, then the total net H+ efflux (H+) equalled that of the roots without DCIP. The simultaneously measured K+ influx rate was first inhibited, then inverted into efflux, and finally influx recovered to low rates. This effect could not be due to uptake of the negatively charged DCIP, but due to the lower H+ efflux and the transmembrane electron efflux caused by DCIP, which would depolarize the membrane and open outward K+ channels. The different H+ efflux kinetics characteristics, together with the small but significant DCIP reduction by CN-roots were taken as evidence that an alternative CN-resistant redox chain in the plasma membrane was involved in DCIP reduction. The hydrophilic electron acceptor DCIP-S enhanced both H+ and K+ flux rates by control roots. DCIP-S was not reduced, but slightly oxidized by control roots, after a lag, while CN-roots did not significantly oxidize or reduce DCIP-S. Perhaps the hydrophobic DCIP could have access to and drain electrons from an intermediate carrier deep inside the membrane, to which the hydrophilic DCIP-S could not penetrate. Also cytochromec enhanced H+ and K+, consistent with the involvement of the CN-resistant redox chain. Control roots did not reduce but oxidize cytochromec after a 15 min lag, and CN-roots doubled the rate of cytochromec oxidation without any lag. NADH in the medium spontaneously reduced cytochromec, but control or CN-roots oxidized cytochromec, despite of the presence of NADH. In this case CN-roots were less efficient, while control roots doubled the rate of cytochromec oxidation by CN-roots, after a 10 min lag in which cytochromec was reduced at the same rate as the medium plus NADH did. CN-roots seemed to have a fully activated CN-resistant branch. The described effects on K+ flux were consistent with the current hypothesis that redox compounds changed the electric membrane potential (de- or hyperpolarization), which induces the opening of voltage-gated in- or outward K+ channels.Abbreviations Cyt c cytochromec - DCIP 2,6-dichlorophenolindophenol - DCIP-S 2,6-dichlorophenolindophenol 3-sulfonate - HCF(III) hexacyanoferrate (III) - PM plasma membrane - SHAM salicylhydroxamic acid - VH+ and VK+ H+ efflux and K+ influx rates - H+ and K+ total H+ efflux and K+ influx at the end of the experiment - H+ and K+ buffering power of the titrated medium  相似文献   

8.
H. Asard  A. Bérczi 《Protoplasma》1998,205(1-4):37-42
Summary Plasma membrane (PM) vesicles were purified in parallel from the roots and shoots of 6-day-old etiolated bean (Phaseolus vulgaris L.) seedlings, grown in water culture at 25 °C, by aqueous polymer two-phase partitioning. The purity of PM fractions was determined by measuring the activity of known marker enzymes (vanadate-sensitive Mg-ATPase, 1,3--glycan synthase, latent ID-Pase, cytochromec oxidase, and antimycin-A-insensitive cytochromec reductase). NADH-(acceptor) oxidoreductase activities were determined with the following electron acceptors: ferricyanide, cytochromec, duroquinone, monodehydroascorbate, Fe3+-EDTA, and oxygen. Cytochromeb content was also determined. In general, results show that redox activities are higher in the root PM than in the shoot PM which follows the glycan synthase II (PM marker) pattern. The relative activities of the distinct redox enzymes measured (activity profile) are remarkably similar in the root and shoot PM preparations. The cytochromeb content and level of ascorbate reduction were also similar in both plant organs. However, the ratio of NADH-(acceptor) oxidoreductase activity to cytochrome content was signifcantly higher in roots when compared to the shoots.Abbreviations CCO cytochromec oxidase - CCR cytochromec reductase - GSII 1,3--glycan synthase - MF microsomal fraction - N-CC-OR NADH-cytochromec oxidoreductase - N-DQ-OR NADH-duroquinone oxidoreductase - N-FC-OR NADH-ferricyanide oxidoreductase - N-FE-OR NADH-Fe3+-EDTA oxidoreductase - N-MDA-OR NADH-monodehydroascorbate oxidoreductase - PM plasma membrane  相似文献   

9.
Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (p) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochromec oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of H+/e stoichiometries, in cytochromec oxidase and cytochromec reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.  相似文献   

10.
Contact of mononuclear human leukocytes with cellulose dialysis membranes may result in complement-independent cell activation, i.e. enhanced synthesis of cytokines, prostaglandins and an increase in 2-microglobulin synthesis. Cellular contact activation is specifically inhibited by the monosaccharidel-fucose suggesting that dialysis membrane associatedl-fucose residues are involved in leukocyte activation. In this study we have detected and quantitatedl-fucose on commercially-available cellulose dialysis membranes using two approaches. A sensitive enzymatic fluorescence assay detectedl-fucose after acid hydrolysis of flat sheet membranes. Values ranged from 79.3±3.6 to 90.2±5.0 pmol cm–2 for Hemophan® or Cuprophan® respectively. Enzymatic cleavage of terminal -l-fucopyranoses with -l-fucosidase yielded 7.7±3.3 pmoll-fucose per cm2 for Cuprophan. Enzymatic hydrolysis of the synthetic polymer membranes AN-69 and PC-PE did not yield detectable amounts ofl-fucose. In a second approach, binding of the fucose specific lectins ofLotus tetragonolobus andUlex europaeus (UEAI) demonstrated the presence of biologically accessiblel-fucose on the surface of cellulose membranes. Specific binding was observed with Cuprophan®, and up to 2.6±0.3 pmoll-fucose per cm2 was calculated to be present from Langmuir-type adsorption isotherms. The data presented are in line with the hypothesis that surface-associatedl-fucose residues on cellulose dialysis membranes participate in leukocyte contact activation.  相似文献   

11.
A periplasmic thiosulfate dehydrogenase (EC 1.8.2.2) was purified to homogeneity from the neutrophilic, obligately chemolithoautotrophicThiobacillus sp. W5. A five-step procedure resulted in an approximately 2,300-fold purification. The purified protein had a molecular mass of 120±3 kDa, as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 33±1 kDa and 27±0.5 kDa, as determined by SDS-PAGE. UV/visible spectroscopy revealed that the enzyme contained haemc; haem staining showed that both subunits contained haemc. A haemc content of 4 mol per mol of enzyme was calculated using the pyridine haemochrome test. The pH optimum of the enzyme was 5.5 At pH 7.5, the Km and Vmax were 120±10 M and 1,160±30 U mg-1, respectively. The absence of 2-heptyl-4-hydroquinoline-N-oxide (HQNO) inhibition for the oxidation of thiosulfate by whole cells suggested that the electrons enter the respiratory chain at the level of cytochromec. Comparison with thiosulfate dehydrogenases from otherThiobacillus species showed that the enzyme was structurally similar to the thiosulfate dehydrogenase of the acidophilic, facultatively chemolithoautotrophicThiobacillus acidophilus, but not to the thiosulfate dehydrogenases published for the obligately chemolithoautotrophicThiobacillus tepidarius andThiobacillus thioparus.Abbreviations BV Benzyl viologen - DCPIP 2,6-Dichloroindophenol - HQNO 2-Heptyl-4-hydroquinoline-N-oxide - NEM N-ethylmaleimide - PES Phenazine ethosulfate - PMS Phenazine methosulfate  相似文献   

12.
Cytochromec oxidase was purified from mitochondria ofEuglena gracilis and separated into 15 different polypeptide subunits by polyacrylamide gel electrophoresis. All 15 subunits copurify through various purification procedures, and the subunit composition of the isolated enzyme is identical to that of the immunoprecipitated one. Therefore, the 15 protein subunits represent integral components of theEuglena oxidase. In anin vitro protein-synthesizing system using isolated mitochondria, polypeptides 1–3 were radioactive labeled in the presence of [35S]methionine. This further identifies these polypeptides with the three largest subunits of cytochromec oxidse encoded by mitochondrial DNA in other eukaryotic organisms. By subtraction, the other 12 subunits can be assigned to nuclear genes. The isolatedEuglena oxidase was highly active withEuglena cytochromec 558 and has monophasic kinetics. Using horse cytochromec 550 as a substrate, activity of the isolated oxidase was rather low. These findings correlate with the oxidase activity of mitochondrial membranes. Again, reactivity was low with cytochromec 550 and 35-fold higher with theEuglena cytochromec 558. The data show that the cytochromec oxidase of the protistEuglena is different from other eukaryotic cytochromec oxidases in number and size of subunits, and also with regard to kinetic properties and substrate specificity.Abbreviations kDa kilodalton - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TN turnover number  相似文献   

13.
Exposure of rats to higher environmental temperature (36–37°C) decreased the capacity of their kidney mitochondria to oxidize succinate. The decrease was corrected on the addition of exogenous cytochromec. Kidney mitochondria of heat-exposed animals showed decreased rates of H2O2 generation when -glycerophosphate, but not succinate, was used as electron donor. These mitochondria also showed decreased activity of -glycerophosphate dehydrogenase but not of succinate dehydrogenase. The content of cytochromec in kidney mitochondria of heat-exposed animals was low even though the concentration of the pigment in the whole tissue did not decrease. Starvation as well as administration of an antithyroid agent like propylthiouracil simulated some of the effects of heat exposure on kidney mitochondria, but the cytochromec-dependent reversal of inhibition of oxidation was obtained only in heat exposure.  相似文献   

14.
Filtered proteins including the low-molecular-weight protein lysozyme are reabsorbed by the proximal tubule via adsorptive endocytosis. This process starts with binding of the protein to the brush-border membrane. The binding of 125I-labelled egg-white lysozyme (EC 3.2.1.17) to isolated brush-border membranes of rat kidney and the effect of several low-molecular weight proteins on that binding was determined. The Scatchard plot revealed a one-component binding type with a dissociation constant of 5.3 μM and 53.0 nmol/mg membrane protein for the number of binding sites. The binding of the cationic lysozyme was inhibited competitively by the addition of cationic cytochrome c to the incubation medium, while the neutral myoglobin had no effect. The anionic β-lactoglobulin A inhibited the lysozyme binding in a noncompetitive manner. These data suggest that the binding takes place between positively charged groups of the protein molecule and negative sites on the brush-border membrane, and, the competition between the cationic cytochrome c and the cationic lysozyme for the binding sites may be responsible for the inhibitory effect of cytochrome c on renal lysozyme reabsorption. The binding step at the brush-border membrane appears to be cation-selective.  相似文献   

15.
Spectrophotometric titrations were conducted on the system horse heart ferricytochromec plus ferrohexacyanide in the pH range 5 to 7 and at temperatures 8, 18, 22 and 28°C. A difference extinction coefficient for reducedvs. oxidized cytochromec at 550 nm of 21 mmol–1cm–1 was used in part of the evaluations. On the assumption that only one electron-transferlinked proton dissociation is effective for both ferro- and ferricytochromec in this pH range, various possible models are developed with only three conforming with the experimental pH dependence of the spectrophotometric equilibrium constant. The data conform best to a model with protonic dissociation constants between pH 5 and 7 such that the reduced cytochromec species is at least a factor of 3 more acidic than the one for oxidized cytochromec (with pKH 6). This interpretation holds least for the data at 22°C, which points to a structural rearrangement at about this temperature (Czerlinski and Bracokova, 1973; Zabinski and Czerlinski, 1974; Zabinski, et al., 1974). While the extinction coefficient of ferrocytochromec shows no significant change with pH and temperature, the one for ferricytochromec does: it is about 5% larger at pH 5 than at pH 7 (550 nm). Graphs for the absorption change of ferricytochromec (pH 7 as reference) document the details over the wavelength range 500 to 750 nm.  相似文献   

16.
The effect of ATP and other anions on the kinetics of cytochromec oxidation by reconstituted bovine heart cytochromec oxidase was investigated. The following results were obtained: (1) ATP and other polyvalent anions increase theK m for cytochromec and theV max (if assayed by the photometric method). The magnitude of the effect is proportional to the charge of the anion as follows from the series of increasing effectiveness: Piii. (2) The kinetic effects are obtained in the millimolar physiological concentration range. (3) The kinetic changes are not saturated at high concentrations. (4) A specific interaction site for ATP at the cytosolic domain of the enzyme is concluded from the increase ofK m for cytochromec after photolabelling of proteoliposomes with 8-azido-[-32P]-ATP, which is protected by ATP but not by ADP. (5) No specific binding site for ATP could be identified by photolabelling with 8-azido-[-32P]-ATP. The labelling is only partly protected by ATP or ADP.Abbreviations CCP carbonylcyanide-m-chlorophenylhydrazone - TMPD N,N,N,N-tetramethyl-1,4-phenylenediamine dihydrochloride - 8-N3-ATP 8-azido-adenosine-5-triphosphate Dedicated to Professor Dr. Friedhelm Schneider on the occasion of his 60th birthday.  相似文献   

17.
The reduction of cyctochromesc +c 1 by durohydroquinone and ferrocyanide in electron transport particles (ETP) and intact cytochromec-depleted beef heart mitochondria has been studied. At least 94% of the ETP are in an inverted orientation. Durohydroquinone reduces 80% ofc +c 1 in ETP but less than 20% in mitochondria; sonication of mitochondria allows reduction of cytochromesc +c 1 (80%). Addition of ferrocyanide (effective redox potential +245 mV) to electron transport particles results in 30% reduction of cytochromesc +c 1. Addition of ferrocyanide to intact cytochromec-depleted mitochondria does not reduce cytochromec 1; treatment withN,N,N,N-tetramethylphenylenediamine, Triton X-100, or sonic oscillation results in 30% reduction of cytochromesc +c 1. TheK m value of ferrocyanide oxidase for K-ferrocyanide is pH-dependent in ETP only, increasing with increasing pH. The extent of reduction of cytochromec 1 is also pH-dependent in ETP only, the extent of reduction increasing with decreasing pH. On the basis of these data cytochromec 1 is exposed to the matrix face and cytochromec is exposed to the cytoplasmic face. No redox center other than cytochromec in the segment between the antimycin site and cytochromec is exposed on the C-side.Abbreviations Used: MES, 2(N-morpholino)-ethanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; TMPD,N,N,N,N-tetramethylphenylenediamine; ETP, electron transport particles; NAD-NADH, nicotinamide adenine dinucleotide; PMS, phenazine methosulfate.  相似文献   

18.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   

19.
Summary The1H NMR signals of the heme methyl, propionate and related chemical groups of cytochromec 3 fromDesulfovibrio vulgaris Miyazaki F (D.v. MF) were site-specifically assigned by means of ID NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the site-specific assignments of the hemes with the highest and second-lowest redox potentials reported by Fan et al. (Biochemistry,29 (1990) 2257–2263). The site-specific heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val18. All the results contradicted the heme assignments forD.v. MF cytochromec 3 made on the basis of electron spin resonance (Gayda et al. (1987)FEBS Lett.,217 57–61). Based on these assignments, the interaction of cytochromec 3 withD.v. MF ferredoxin I was investigated by NMR. The major interaction site of cytochromec 3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochromec 3 molecules per monomer of ferredoxin I and 108 M–2 (at 53 mM ionic strength and 25°C), respectively.  相似文献   

20.
Summary Cytochromec added during the formation of lecithin-cardiolipin liquid crystals in 0.015m KCl is readily bound. After successive washings with 0.15m KCl, only about 50% of this bound cytochromec is removed. The remaining cytochromec is resistant to further salt extraction, and the amount of this cytochromec that is bound varies with the concentration of added cytochromec to a maximum binding ratio of 170, mole ratio cytochromec to phospholipid. This binding appears to be electrostatic; it is competitively inhibited by increasing the initial molarity of KCl from 0.015 to 0.10m. Binding of cytochromec is insignificant in the absence of cardiolipin, and is affected by varying the pH. Electron microscope studies of osmium tetroxide-stained thin sections show that the liquid crystals consist of vesicles, each of which contains a large number of concentric, alternating light and dense lines. The dense lines have been identified by other workers with the polar head groups of the phospholipids on the surface of a bilayer, and the light area represents the hydrophobic interior. The addition of cytochromec causes an average decrease in the number of lines per vesicle. It increases the center-to-center distance between two neighboring light or dense lines and the width of the dense lines. On the basis of this evidence and electrostatic binding, it is concluded that cytochromec is binding on the polar surfaces of the phospholipid bilayers comprising the liquid crystalline vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号