首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.  相似文献   

2.
Lung carcinomas are now the most common form of cancer. Clinical data suggest that tumors are found preferentially in upper airways, perhaps specifically at carina within bifurcations. The disease can be treated by aerosolized pharmacologic drugs. To enhance their efficacies site-specific drugs must be deposited selectively. Since inhaled particles are transported by air, flow patterns will naturally affect their trajectories. Therefore, in Part I of a systematic investigation, we focused on tumor-induced effects on airstreams, in Part II (the following article [p. 245]), particle trajectories were determined. To facilitate the targeted delivery of inhaled drugs, we simulated bifurcations with tumors on carinas using a commercial computational fluid dynamics (CFD) software package (FIDAP) with a Cray T90 supercomputer and studied effects of tumor sizes and ventilatory parameters on localized flow patterns. Critical tumor sizes existed; e.g., tumors had dominant effects when r/R > or = 0.8 for bifurcation 3-4 and r/R > or = 0.6 for bifurcation 7-8 (r = tumor radius and R = airway radius). The findings suggest that computer modeling is a means to integrate alterations to airway structures caused by diseases into aerosol therapy protocols.  相似文献   

3.
One important research area of broad interest is the development of highly efficient drug delivery systems for desired site deposition and uptake. For example, controlled drug aerosol release and targeting to specific regions of the lung is a novel way to combat lung diseases, diabetes, virus infections, cancers, etc. Determination of feasible air-particle streams is a prerequisite for the development of such delivery devices, say, smart inhalers. The concept of "controlled particle release and targeting" is introduced and results are discussed for a representative model of bronchial lung airways afflicted with hemispherical tumors of different sizes and locations. It is shown that under normal particle inlet conditions a particle mass fraction of only up to 11% may deposit on the surface of a specific tumor with critical radius r/R approximately 1.25, while a controlled particle release achieves deposition fractions of 35 to 92% for a realistic combination of inlet Stokes and Reynolds numbers, depending mainly on tumor size. Furthermore, with the controlled release and targeting approach nearby healthy tissue is hardly impacted by the typically aggressive drug aerosols. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting micron-particles in sequentially bifurcating rigid airways, the results were obtained using a validated commercial finite-volume code with user-enhanced programs on a high-end engineering workstation. The new concept is generic and hence should be applicable to other regions of the respiratory system as well.  相似文献   

4.
The purpose of this research was to form stable suspensions of submicron particles of cyclosporine A, a water-insoluble drug, by rapid expansion from supercritical to aqueous solution (RESAS). A solution of cyclosporine A in CO2 was expanded into an aqueous solution containing phospholipid vesicles mixed with nonionic surfactants to provide stabilization against particle growth resulting from collisions in the expanding jet. The products were evaluated by measuring drug loading with high performance liquid chromatography (HPLC), particle sizing by dynamic light scattering (DLS), and particle morphology by transmission electron microscopy (TEM) and x-ray diffraction. The ability of the surfactant molecules to orient at the surface of the particles and provide steric stabilization could be manipulated by changing process variables including temperature and suspension concentration. Suspensions with high payloads (up to 54 mg/mL) could be achieved with a mean diameter of 500 nm and particle size distribution ranging from 40 to 920 nm. This size range is several hundred nanometers smaller than that produced by RESAS for particles stabilized by Tween 80 alone. The high drug payloads (≈10 times greater than the equilibrium solubility), the small particle sizes, and the long-term stability make this process attractive for development.  相似文献   

5.
Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.  相似文献   

6.
Polyethylene oxide has been researched extensively as an alternative polymer to hydroxypropyl methylcellulose (HPMC) in controlled drug delivery due to its desirable swelling properties and its availability in a number of different viscosity grades. Previous studies on HPMC have pointed out the importance of particle size on drug release, but as of yet, no studies have investigated the effect of particle size of polyethylene oxide (polyox) on drug release. The present study explored the relationship between polymer level and particle size to sustain the drug release. Tablets produced contained theophylline as their active ingredient and consisted of different polyethylene oxide particle size fractions (20–45, 45–90, 90–180 and 180–425 μm). It was shown that matrices containing smaller particle sizes of polyox produced harder tablets than when larger polyox particles were used. The release studies showed that matrices consisting of large polyox particles showed a faster release rate than matrices made from smaller particles. Molecular weight (MW) of the polymer was a key determining step in attaining sustained release, with the high MW of polyox resulting in a delayed release profile. The results showed that the effect of particle size on drug release was more detrimental when a low concentration of polyox was used. This indicates that care must be taken when low levels of polyox with different particle size fractions are used. More robust formulations could be obtained when the concentration of polyox is high. Differential scanning calorimetry (DSC) traces showed that particle size had no major effect on the thermal behaviour of polyox particles.KEY WORDS: DSC traces, particle size, polyox, sustained release, theophylline  相似文献   

7.
The effect of perfluorochemicals in combination with carbogen breathing on the response of SCK tumors of mice to fractionated irradiation was investigated. The SCK tumors of A/J mice were irradiated twice a day at 3 Gy per fraction (6 Gy per day), with a total dose of 18 Gy over 3 days. When the host animals were treated with an intravenous (iv) injection of 12 ml/kg of Fluosol-DA 20% before the first daily tumor irradiation and carbogen breathing during every X irradiation with Fluosol-DA 20% injection without carbogen breathing. The hypoxic cell fraction, as determined by an in vivo-in vitro cloning assay, decreased significantly, and the intratumor pO2, as determined with microelectrodes, was markedly increased by Fluosol-DA 20% injection and carbogen breathing. It was concluded that oxygenation of hypoxic cells in SCK tumors during the course of fractionated irradiation was improved by the iv injection of Fluosol-DA 20% and carbogen breathing.  相似文献   

8.
Understanding the impact distribution of particles entering the human respiratory system is of primary importance as it concerns not only atmospheric pollutants or dusts of various kinds but also the efficiency of aerosol therapy and drug delivery. To model this process, current approaches consist of increasingly complex computations of the aerodynamics and particle capture phenomena, performed in geometries trying to mimic lungs in a more and more realistic manner for as many airway generations as possible. Their capture results from the complex interplay between the details of the aerodynamic streamlines and the particle drag mechanics in the resulting flow. In contrast, the present work proposes a major simplification valid for most airway generations at quiet breathing. Within this context, focusing on particle escape rather than capture reveals a simpler structure in the entire process. When gravity can be neglected, we show by computing the escape rates in various model geometries that, although still complicated, the escape process can be depicted as a multiplicative escape cascade in which each elementary step is associated with a single bifurcation. As a net result, understanding of the particle capture may not require computing particle deposition in the entire lung structure but can be abbreviated in some regions using our simpler approach of successive computations in single realistic bifurcations. Introducing gravity back into our model, we show that this multiplicative model can still be successfully applied on up to nine generations, depending on particle type and breathing conditions.  相似文献   

9.
Pimonidazole binding was compared with oxygen electrode measurements and with measurements of the radiobiologically hypoxic fraction in C3H mammary tumors in which oxygenation was manipulated by means of subjecting tumor-bearing CDF1 mice to air breathing, carbogen breathing, oxygen breathing, hydralazine injection or tumor clamping. Hypoxia measured by pimonidazole binding could be correlated with both pO2 (r2 = 0.81) and radiobiologically hypoxic fraction (r2 = 0.85) in this system. The scope and limitation of pimonidazole as an immunohistochemical marker for tumor hypoxia is discussed.  相似文献   

10.
Abstract

The aim of this study is to prepare a nanostructured lipid carrier (NLC) containing Fentanyl Citrate drug. The materials were selected in a way to achieve a nanostructure with lower particle size and higher drug entrapment efficiency. For this purpose, we used two mathematical models, Van Krevelen-Hoftyze and Hoy’s methods, which are based on the calculation of solubility parameters. Various NLC formulations are prepared experimentally to validate the mathematical modeling results. Hot homogenization method was used for NLC preparation. DLS, HPLC, TEM and DSC analyses are performed to calculate the size, drug entrapment efficiency, morphology and thermal behavior of particles, respectively. Experimental results suggest that the best NLC formulation has a particle size of 90?nm with a spherical morphology and drug entrapment efficiency of about 82%. A comparison of the mathematical and experimental results exhibits that Van Krevelen-Hoftyzer method is unable to provide an accurate estimation of the decreasing trend of particle size by chaining the components of NLC. However, Hoy’s method seems to be suitable for this purpose. Moreover, both mathematical methods could successfully estimate variation trend of drug entrapment efficiency by chaining the NLC components. Results show that surfactants-lipids solubility parameter has a bearing on the nanoparticle size while drug-lipid solubility parameter affects drug entrapment efficiency.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
A simulation approach to understanding the masticatory process   总被引:1,自引:0,他引:1  
An analysis of the reduction of food particle sizes during human mastication is presented in terms of the probability of a particle being broken (selection function) and the distribution of fragment sizes produced when it fails (breakage function). Both selection and breakage functions are defined and a general equation produced. Several feasible behaviours for these two variables that have been suggested in the literature are modelled by computer simulation and the results are compared to published breakdown patterns. The conclusions are that selection and breakage functions probably behave very simply with respect to particle size, and that these behaviours could be deduced from an analysis of food particle size distributions and the rate at which particle sizes are reduced per chew.  相似文献   

12.
Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20Hz, magnitude >13mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96Hz, magnitude <1mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard “cigar-shaped” millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC<45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing “cigar-shaped” lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC>75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3·min-1). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.  相似文献   

13.
Nanoparticles are increasingly important in medical research for application to areas such as drug delivery and imaging. Understanding the interactions of nanoparticles with cells in physiologically relevant environments is vital for their acceptance, and cell–particle interactions likely vary based on the design of the particle including its size, shape, and surface chemistry. For this reason, the kinetic interactions of fluorescent nanoparticles of sizes 20, 100, 200, and 500 nm with human umbilical vein endothelial cells (HUVEC) were determined by (1) measuring nanoparticles per cell at 37 and 4°C (to inhibit endocytosis) and (2) modeling experimental particle uptake data with equations describing particle attachment, detachment, and internalization. Additionally, the influence of cell substrate compliance on nanoparticle attachment and uptake was investigated. Results show that the number of binding sites per cell decreased with increasing nanoparticle size, while the attachment coefficient increased. By comparing HUVEC grown on either a thin coating of collagen or on top of three‐dimensional collagen hydrogel, nanoparticle attachment and internalization were shown to be influenced significantly by the substrate on which the cells are cultured. This study concludes that both particle size and cell culture substrate compliance appreciably influence the binding of nanoparticles; important factors in translating in vitro studies of nanoparticle interactions to in vivo studies focused on therapeutic or diagnostic applications. Biotechnol. Bioeng. 2011;108: 2988–2998. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
The swelling of a dextran gel, Sephadex G-75, was observed in an aqueous environment at room temperature by a noninvasive technique that uses light microscopy coupled to an image analysis system via a video camera. The rate of swelling was found to follow the Tanaka and Fillmore theory, from which the overall gel diffusion coefficient was estimated as 6.3 x 10(-7) cm2/s. In addition to giving a quantitative measure of gel swelling that could be useful in the mechanical design of liquid chromatography columns, this approach provides data on wet particle size and particle size range, which is needed for the modeling of diffusional and mass transfer effects in size-exclusion chromatography. In this context, key observations are that the gel particles are nearly spherical with an elliptical shape factor of 0.98 (perfect sphere = 1) and that there is little difference between sizes of particles obtained in water, 50 mM Tris-glycine buffer (pH 10.2), and buffer containing 1 mg/mL protein. The diameter of the dry material ranged from 20 to 100 microns, while the hydrated particles had diameters of 40-350 microns. The rate of swelling is rapid, with 50% swelling occurring in about 10 s and swelling to 99% of the final wet particle size being obtained in less than 90 s.  相似文献   

15.
The most common mechanism for human exposure to hantaviruses throughout North America is inhalation of virally contaminated particulates. However, risk factors associated with exposure to particulates potentially contaminated with hantaviruses are generally not well understood. In North America, Sin Nombre virus (SNV) is the most common hantavirus that infects humans, causing hantavirus pulmonary syndrome, which has a significant mortality rate (approximately 35%). We investigated human exposure to particulate matter and evaluated the effects of season, location (sylvan and peridomestic environment), and activity (walking and sweeping) on generation of particulates at the breathing zone (1.5 m above the ground). We found greater volumes of small inhalable particulates during the spring and summer compared to the fall and winter seasons and greater volumes of small inhalable particulates produced in peridomestic, compared to sylvan, environments. Also, greater volumes of particulates were generated at the breathing zone while walking compared to sweeping. Results suggest that more aerosolized particles were generated during the spring and summer months. Our findings suggest that simply moving around in buildings is a significant source of human exposure to particulates, potentially contaminated with SNV, during spring and summer seasons. These findings could be advanced by investigation of what particle sizes SNV is most likely to attach to, and where in the respiratory tract humans become infected.  相似文献   

16.
We now report the formation mechanism of the thermoresponsive-type coacervate with the novel functional temperature-sensitive polymer, poly(N-isopropylacrylamide-co-2-hydroxyisopropylacrylamide) (poly(NIPAAm-co-HIPAAm)), synthesized in our laboratory. The effects of introducing the hydrophilic comonomer (HIPAAm) into the copolymer chains and adding salts on the behaviors of the coacervate droplets induced in the poly(NIPAAm-co-HIPAAm) aqueous solutions were investigated. Not only the particle sizes of the coacervate droplets but also the cloud points of the copolymer solutions could be modulated by the HIPAAm content incorporated in the copolymers. Moreover, the particle sizes of the coacervate droplets were also changed by adding salts. Namely, the particle sizes increased with the decreasing HIPAAm composition and increasing NaCl concentration. In addition, the 1H NMR and differential scanning calorimetric measurements suggested that as the HIPAAm content decreased or NaCl concentration increased, dehydration of the copolymers induced in the phase transition and/or separation became much easier. Therefore, on the basis of the findings obtained from these measurements, we determined that the particle sizes of the coacervate droplets induced in the temperature-sensitive polymers increased as the number of the water molecules, which are dissociated from the polymeric chains during the phase transition and/or separation, increased. Besides, to examine the separation of the model solutes, the aqueous two-phase separation with the coacervate droplets of poly(NIPAAm-co-HIPAAm) was carried out. The partitions of Methyl Orange as a model solute under both acidic (pH 2) and basic (pH 12) conditions were performed. The amount of Methyl Orange partitioned into the coacervate droplets at pH 12 is much greater than that at pH 2, which indicated that the coacervate droplets could recognize a slight difference in the polarity or structure between the model solutes.  相似文献   

17.
Food comminution during chewing is the composite result of selection and breakage. In the selection process, every food particle has a chance of being placed between the antagonistic post-canine teeth and being subjected to subsequent breakage. The selection chance, being the ratio between the number of selected and offered particles, has been mathematically described as a function of the number of particles offered, in terms of the number of breakage sites available on the teeth and particle affinity, i.e. the fraction of breakage sites occupied by one particle. The assumption has been made that particles are successively selected during a jaw-closing phase and that the selection chance of subsequent particles having the opportunity to occupy a breakage site proportionally decreases with the unoccupied fraction of the breakage sites left. The number of selected particles of a single size then asymptotically approaches the total number of breakage sites available for that size, when the number of particles offered increases. The critical particle number, derived from the measure of particle affinity, indicates the number of particles by which the breakage sites become saturated. The selection model for single particle sizes has been successfully applied to describe one-chew experiments, using various numbers and sizes of particles made of a silicone-rubber. After pseudo-chewing movements the subjects were unexpectedly instructed to carry out a real chew on particles (half-cubes). Undamaged, hence non-selected half-cubes could afterwards be distinguished from broken particles. The model has been extended to a particle mixture to describe the selection of particles of a certain size while other particles of different sizes are present. If a two-way competition between smaller and larger particles is assumed, the model predicts that the ratios of the selection chances between different particle sizes do not depend upon the numbers of the particles in the mixture.  相似文献   

18.
Biophysical procedures have been used to determine the size and structure of the biologically active agent responsible for the transmission, through milk, of mouse mammary adenocarcinoma. Filtration of milk from RIII high-breast-cancer mice through gradocol membranes with decreasing pore sizes indicated that a minimum of activity passed through intermediate pore sizes (100 to 160 mmicro). Filtrates through smaller pores were significantly active. Milk treated with small doses of deuteron irradiation produced more tumors than the control, unirradiated milk; larger doses indicated a particle size much less than 100 mmicro. Free diffusion experiments indicated that the activity was associated with particles of two different sizes. Altogether the data denoted the presence of a large agent about 100 mmicro in diameter and a small agent 20 to 30 mmicro in diameter or possibly smaller. Furthermore, the presence in the milk of an inhibitor 40 to 60 mmicro is indicated by the results of all three approaches. The complex nature of the milk agent disclosed by the physical measurements agrees with the picture of one of the structures revealed by electron microscopy as well as with seemingly conflicting measurements reported in the literature. The large agent defined by these indirect methods corresponds to the whole particle seen in the electron microscope and the small agent corresponds to its internal core or nucleoid. It is suggested that the nucleoid is essentially a nucleic acid which may, in the absence of the "inhibitor," retain its activity after being stripped of its outer membrane or sac.  相似文献   

19.
Models of the human respiratory tract were developed based on detailed morphometric measurements of a silicone rubber cast of the human tracheobronchial airways. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent a portion of the lung, such as a lobe, or to represent the whole lung. The models contain geometrical parameters, including airway segment diameters, lengths, branching angles and angles of inclination to gravity, which are needed for estimating inhaled particle deposition. Aerosol depositions for various breathing patterns and particle sizes were calculated using these lung models and the modified Findeisen-Landahl computational scheme. The results agree reasonably well with recent experimental data. Regional deposition, including lobar deposition fractions, are also calculated and compared with results based on the ICRP lung deposition model.  相似文献   

20.
The penetration of anticancer agents into tumor tissue has recently attracted considerable attention. This study examines the effect of carbogen breathing on the antitumor activity of tirapazamine combined with radiation. Our hypothesis is based on the observation that the diffusion of tirapazamine through tissue is dependent on oxygen tension. We postulated that carbogen breathing might enhance the ability of tirapazamine to diffuse to hypoxic cells located distal to functional blood vessels in tumors. We first determined that carbogen breathing caused no significant change in the pharmacokinetics of tirapazamine, suggesting that any effect of carbogen breathing on the activity of tirapazamine is not attributable to modulation of pharmacokinetics. Cell survival in SCCVII and SiHa tumors after 10 Gy X rays alone was similar. However, when tirapazamine was administered 30 min after radiation treatment under air-breathing conditions, cell killing was greater in SCCVII tumors compared to SiHa tumors. Carbogen breathing during the exposure to tirapazamine did not change the cell survival in SCCVII tumors, but it enhanced cell killing in the SiHa tumors. Interestingly, carbogen breathing during radiation treatment produced greater cell killing in the SiHa tumors than in the SCCVII tumors. The vascular architecture and type of hypoxia in the two tumors probably underlie the differences in the responses of the two tumors. These findings suggest that the effectiveness of tirapazamine and other hypoxic cytotoxins may be dependent on tumor type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号