首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary We present the sequence of the nuclearencoded ribosomal small-subunit RNA from soybean. The soybean 18S rRNA sequence of 1807 nucleotides (nt) is contained in a gene family of approximately 800 closely related members per haploid genome. This sequence is compared with the ribosomal small-subunit RNAs of maize (1805 nt), yeast (1789 nt),Xenopus (1825 nt), rat (1869 nt), andEscherichia coli (1541 nt). Significant sequence homology is observed among the eukaryotic small-subunit rRNAs examined, and some sequence homology is observed between eukaryotic and prokaryotic small-subunit rRNAs. Conserved regions are found to be interspersed among highly diverged sequences. The significance of these comparisons is evaluated using computer simulation of a random sequence model. A tentative model of the secondary structure of soybean 18S rRNA is presented and discussed in the context of the functions of the various conserved regions within the sequence. On the basis of this model, the short basepaired sequences defining the four structural and functional domains of all 18S rRNAs are seen to be well conserved. The potential roles of other conserved soybean 18S rRNA sequences in protein synthesis are discussed.  相似文献   

2.
We present the sequence of the nuclear-encoded ribosomal small-subunit RNA from soybean. The soybean 18S rRNA sequence of 1807 nucleotides (nt) is contained in a gene family of approximately 800 closely related members per haploid genome. This sequence is compared with the ribosomal small-subunit RNAs of maize (1805 nt), yeast (1789 nt), Xenopus (1825 nt), rat (1869 nt), and Escherichia coli (1541 nt). Significant sequence homology is observed among the eukaryotic small-subunit rRNAs examined, and some sequence homology is observed between eukaryotic and prokaryotic small-subunit rRNAs. Conserved regions are found to be interspersed among highly diverged sequences. The significance of these comparisons is evaluated using computer simulation of a random sequence model. A tentative model of the secondary structure of soybean 18S rRNA is presented and discussed in the context of the functions of the various conserved regions within the sequence. On the basis of this model, the short base-paired sequences defining the four structural and functional domains of all 18S rRNAs are seen to be well conserved. The potential roles of other conserved soybean 18S rRNA sequences in protein synthesis are discussed.  相似文献   

3.
Summary Complete small-subunit rRNA (16S-like rRNA) coding region sequences were determined for eight species of the Chlorococcales (Chlorophyceae). The genera investigated includePrototheca, Ankistrodesmus, Scenedesmus, and fiveChlorella species. Distance matrix methods were used to infer a phylogenetic tree that describes evolutionary relationships between several plant and green algal groups. The tree exhibits a bifurcation within the Chlorococcales consistent with the division into Oocystaceae and Scenedesmaceae, but three of the fiveChlorella species are more similar to other algae than toChlorella vulgaris. All of the sequences contain primary and secondary structural features that are characteristic of 16S-like rRNAs of chlorophytes and higher plants.Anikstrodesmus stipitatus, however, contains a 394-bp group I intervening sequence in its 16S-like rRNA coding region.  相似文献   

4.
Summary The sequence of the small-subunit rRNA from the thermoacidophilic archaebacteriumSulfolobus solfataricus has been determined and compared with its counterparts from halophilic and methanogenic archaebacteria, eukaryotes, and eubacteria. TheS. solfataricus sequence is specifically related to those of the other archaebacteria, to the exclusion of the eukaryotic and eubacterial sequences, when examined either by evolutionary distance matrix analyses or by the criterion of minimum change (maximum parsimony). The archaebacterial 16S rRNA sequences all conform to a common secondary structure, with theS. solfataricus structure containing a higher proportion of canonical base pairs and fewer helical irregularities than the rRNAs from the mesophilic archaebacteria.S. solfataricus is unusual in that its 16S rRNA-23S rRNA intergenic spacer lacks a tRNA gene.  相似文献   

5.
The single-copy actin gene of Giardia lamblia lacks introns; it has an average of 58% amino acid identity with the actin of other species; and 49 of its amino acids can be aligned with the amino acids of a consensus sequence of heat shock protein 70. Analysis of the potential RNA secondary structure in the transcribed region of the G. lamblia actin gene and of the single-copy actin gene of nine other species did not reveal any conserved structures. The G. lamblia actin sequence was used to root the phylogenetic trees based on 65 actin protein sequences from 43 species. This tree is congruent with small-subunit rRNA trees in that it shows that oomycetes are not related to higher fungi; that kinetoplatid protozoans, green plants, fungi and animals are monophyletic groups; and that the animal and fungal lineages share a more recent common ancestor than either does with the plant lineage. In contrast to smalls-ubunit rRNA trees, this tree shows that slime molds diverged after the plant lineage. The slower rate of evolution of actin genes of slime molds relative to those of plants, fungi, and animals species might be responsible for this incongruent branching. Correspondence to: G. Drouin  相似文献   

6.
The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of suborder Suiformes. However, the monophyly of the suborder Ruminantia was not supported, and the branching pattern between Cetacea and the artiodactyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced, but the relationships between Artiodactyla, Cetacea, and Perissodactyla remained unresolved. Nevertheless, we found no support for a Perissodactyla + Hyracoidea clade, neither with distance approach, nor with parsimony reconstruction. The 12S rRNA was useful to solve intraordinal relationships among Ungulata, but it seemed to harbor too few informative positions to decipher the bushlike radiation of some Ungulata orders, an event which has most probably occurred in a short span of time between 55 and 70 MYA. Correspondence to: E. Douzery  相似文献   

7.
8.
Summary The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.Offprint requests to: H. van Keulen  相似文献   

9.
Phylogenetic relationships of the Santalales and relatives   总被引:3,自引:0,他引:3  
Summary Determining relationships among parasitic angiosperms has often been difficult owing to frequent morphological reductions in floral and vegetative features. We report 18S (small-subunit) rRNA sequences for representative genera of three families within the Santalales (Olacaceae, Santalaceae, and Viscaceae) and six outgroup dicot families (Celastraceae, Cornaceae, Nyssaceae, Buxaceae, Apiaceae, and Araliaceae). Using Wagner parsimony analysis, one most parsimonius tree resulted that shows the Santalales to be a holophyletic taxon most closely related toEuronymus (Celastraceae). The santalalean taxa showed approximately 13% more transitional mutations than the group of seven other dicot species. This suggests a higher fixation rate for mutations in these organisms, possibly owing to a relaxation of selection pressures at the molecular level in parasitic vs nonparasitic plants. Outgroup relationships are generally in accord with current taxonomic classifications, such as the grouping of Nyssaceae and Cornaceae together (Cornales) and the grouping of Araliaceae with Apiaceae (Apiales). These data provide the first nucleotide sequences for any parasitic flowering plant and support the contention that rRNA sequence analysis can result in robust phylogenetic comparisons at the family level and above.  相似文献   

10.
The entire nucleotide sequence containing the small-subunit ribosomal RNA gene (SSU rRNA) from the mitochondrial genome of Chondrus crispus was determined. To our knowledge, this is the first sequence of a mitochondrial 16S-like rRNA from a red alga. The length of this gene is 1,376 nucleotides. Its secondary structure was constructed and compared with other known secondary structures from eubacteria and from mitochondria of land plants, green and brown algae, and fungi. Phylogenetic trees were built upon SSU rRNA sequence alignment from mitochondria and eubacteria. The results show that rhodophytes and chromophytes provide additional links in the evolution of mitochondria between the green plant lineage and the nonplant lineages.Correspondence to: C. Boyen  相似文献   

11.
Ribosomal DNA sequences for the ITS 1, 5.8S, ITS 2 and adjoining regions of the 18S and 25S were obtained from Mimulus glaucescens (Scrophulariaceae) via cloned PCR products. The spacer sequences were completely unrelated to other plant taxa, although spacer lengths were approximately the same. Interestingly, the Mimulus 5.8S sequence was much more divergent than other higher-plant rDNA sequences. Consideration of the secondary structure of the 5.8S rRNA shows that most of the changes in Mimulus are compensatory and preserve the basic secondary structure of the mature RNA molecule.  相似文献   

12.
Mitochondrial small-subunit (19S) rDNA sequences were obtained from 10 angiosperms to further characterize sequence divergence levels and structural variation in this molecule. These sequences were derived from seven holoparasitic (nonphotosynthetic) angiosperms as well as three photosynthetic plants. 19S rRNA is composed of a conservative core region (ca. 1450 nucleotides) as well as two variable regions (V1 and V7). In pairwise comparisons of photosynthetic angiosperms to Glycine, the core 19S rDNA sequences differed by less than 1.4%, thus supporting the observation that variation in mitochondrial rDNA is 3–4 times lower than seen in protein coding and rDNA genes of other subcellular organelles. Sequences representing four distinct lineages of nonasterid holoparasites showed significantly increased numbers of substitutions in their core 19S rDNA sequences (2.3–7.6%), thus paralleling previous findings that showed accelerated rates in nuclear (18S) and plastid (16S) rDNA from the same plants. Relative rate tests confirmed the accelerated nucleotide substitution rates in the holoparasites whereas rates in nonparasitic plants were not significantly increased. Among comparisons of both parasitic and nonparasitic plants, transversions outnumbered transitions, in many cases more than two to one. The core 19S rRNA is conserved in sequence and structure among all nonparasitic angiosperms whereas 19S rRNA from members of holoparasitic Balanophoraceae have unique extensions to the V5 and V6 variable domains. Substitution and insertion/deletion mutations characterized the V1 and V7 regions of the nonasterid holoparasites. The V7 sequence of one holoparasite (Scybalium) contained repeat motifs. The cause of substitution rate increases in the holoparasites does not appear to be a result of RNA editing, hence the underlying molecular mechanism remains to be fully documented. Received: 18 May 1997 / Accepted: 11 July 1997  相似文献   

13.
The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. Received: 2 March 1999 / Accepted: 22 July 1999  相似文献   

14.
Phototrophic dinoflagellate zooxanthellae commonly occur as endosymbionts in many planktic and certain benthic foraminifera (soritids). Many taxonomic issues and specific identities of foraminiferal dinoflagellates are not yet resolved. To assess taxonomic affinities among other dinoflagellates, we have determined the complete nucleotide sequence of the small-subunit rRNA coding region from Symbiodinium sp., an endosymbiotic dinoflagellate of the larger foraminifer Sorites orbiculus. The poly merase chain reaction was adopted for the in vitro amplification of ribosomal DNA, utilizing primers complementary to conserved regions. PCR-amplified DNA was directly sequenced and the sequence was aligned to all complete 18S-rDNA dinoflagellate sequences currently available through GenBank. Apicomplexan, ciliate, chromistacean, and rhodophycean sequences were added to infer across-kingdom phylogenetic relationships. Phylogenetic analysis of aligned nucleotide sequences produced a single most parsimonious tree (generated by the branch and bound method of PAUP). The inferred phylogeny indicates that the dinoflagellate extracted from the foraminifer Sorites orbiculus is a sister taxon to the symbiont present in the larger foraminifera Marginopora kudakajimaensis, but only distantly related to the dinoflagellate isolated from the soritid Amphisorus hemprichii. The sequence heterogeneity demonstrates a high degree of genetic diversity among Symbiodinium-like zooxanthellae and re-emphasizes that they are a variety of distinct entities.The inferred molecular phylogenetic relationships among symbiotic dinoflagellates are not congruent with the foraminiferal phylogeny based on cladistic methodology. The lack of correlation between the evolutionary history of dinoflagellate symbionts and their foraminiferal hosts argues against co-evolution. This lack of co-evolution implies that flexible recombinations among hosts and symbionts are evolutionarily favorable over permanently associated lineages, at least in these benthic foraminifera.  相似文献   

15.
We have sequenced the small-subunit ribosomal RNA gene of the amoebo- flagellate protozoan Naegleria gruberi. Comparison of this sequence with the rRNA sequences of other eukaryotes resulted in a phylogenetic tree that supports the suggested polyphyletic origin of amoebas and suggests a flagellate ancestry for Naegleria.   相似文献   

16.
Occurrence and genomic organization of dispersed elements containing ZpS1 satellite repeats have been investigated in a wide representation of species of the old plant genus Zamia (Zamiaceae, Cycadales). In Z. paucijuga, the ZpS1 repeat is organized as long satellite DNA arrays and as short arrays inserted into AT-rich dispersed elements. A comparative study by Southern analysis shows that these unusual dispersed elements containing the ZpS1 repeat are present with different organizations in all investigated Zamia species. In some species these elements are present with a low copy number, while in other species secondary amplification events, involving specific sequence clusters, appear to have generated characteristic dispersed elements in a high copy number. Among Zamia species, several groups share similar restriction patterns, as the Zamia loddigesii complex and the Caribbean species suggesting a general correlation between organization and genomic representation of the dispersed repeated sequence and the pattern of phyletic relationships in the genus. However, the finding of different patterns also among closely related species suggests a complex history of amplifications and losses of these dispersed repetitive elements that cannot be always easily traced through the phylogenetic reconstruction of this ancient plant group.  相似文献   

17.
18.
Summary The nuclear 18 S, 5.8 S and 25 S ribosomal RNA genes (rDNA) of Cucumis sativus (cucumber) occur in at least four different repeat types of 10.2, 10.5, 11.5, and 12.5 kb in length. The intergenic spacer of these repeats has been cloned and characterized with respect to sequence organization. The spacer structure is very unusual compared to those of other eukaryotes. Duplicated regions of 197 bp and 311 bp containing part of the 3 end of the 25 S rRNA coding region and approximately 470 bp of 25 S rRNA flanking sequences occur in the intergenic spacer. The data from sequence analysis suggest that these duplications originate from recombination events in which DNA sequences of the original rDNA spacer were paired with sequences of the 25 S rRNA coding region. The duplicated 3ends of the 25 S rRNA are separated from each other mostly by a tandemly repeated 30 bp element showing a high GC-content of 87.5%. In addition, another tandemly repeated sequence of 90 bp was found downstream of the 3flanking sequences of the 25 S rRNA coding region. These results suggest that rRNA coding sequences can be involved in the generation of rDNA spacer sequences by unequal crossing over.  相似文献   

19.
The small-subunit rRNA sequence of a species of Amoebophrya infecting Gymnodinium sanguineum in Chesapeake Bay was obtained and compared to the small subunit rRNA sequences of other protists. Phylogenetic trees constructed with the new sequence place Amoebophrya between the remaining dinoflagellates and other protists.  相似文献   

20.
FiveP. bryantii B14 16S rRNA gene copies and their flanking regions were cloned and analyzed. A genomic library was constructed and screened with oligonucleotide DNA probe specific for 16S rRNA gene ofP. bryantii. Five out of six different copies of 16S RNA gene were recovered and sequenced. Only minor differences (0.3–1.2%) between copies were detected within the 1541 bp long sequence. The impact of the sequence variability of 16S rRNA gene copies on phylogenetic positioning ofP. bryantii was determined. All five sequences from clonedP. bryantii B14 16S rRNA genes were placed in the same operational taxonomy unit. Control regions of all five analyzed rRNA operatons were almost identical and three candidate for promoter sequences were identified by Neutral Network Promoter Prediction. Spacer regions between 16S-rRNA and 23S rRNA genes in all five cloned copies were 543 bp long and genes for tRNAlle and tRNAAla were identified inside this regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号