首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ogita H  Takai Y 《IUBMB life》2006,58(5-6):334-343
Nectins and nectin-like molecules (Necls) are immunoglobulin-like cell adhesion molecules that constitute families containing four and five members, respectively. All members, except for Necl-5, trans-interact homophilically. Furthermore, all members, including Necl-5, trans-interact heterophilically with their respective specific partners among the members. Necl-5 regulates cell movement and proliferation cooperatively with integrin alphavbeta3 and growth factor receptors. Nectins function as cell-cell adhesion molecules at a variety of cell-cell junctions, including adherens junctions, and regulate the initial step of cell-cell junction formation. Nectins and integrin alphavbeta3 are further involved in the cross-talk between cell-matrix and cell-cell junctions. Thus, both nectin and Necl family members play important roles in fundamental cellular functions, including cell adhesion, polarization, movement, and proliferation.  相似文献   

2.
《The Journal of cell biology》1994,125(6):1371-1384
To examine the functions of ERM family members (ezrin, radixin, and moesin), mouse epithelial cells (MTD-1A cells) and thymoma cells (L5178Y), which coexpress all of them, were cultured in the presence of antisense phosphorothioate oligonucleotides (PONs) complementary to ERM sequences. Immunoblotting revealed that the antisense PONs selectively suppressed the expression of each member. Immunofluorescence microscopy of these ezrin, radixin, or moesin "single-suppressed" MTD-1A cells revealed that the ERM family members are colocalized at cell-cell adhesion sites, microvilli, and cleavage furrows, where actin filaments are densely associated with plasma membranes. The ezrin/radixin/moesin antisense PONs mixture induced the destruction of both cell-cell and cell-substrate adhesion, as well as the disappearance of microvilli. Ezrin or radixin antisense PONs individually affected the initial step of the formation of both cell-cell and cell-substrate adhesion, but did not affect the microvilli structures. In sharp contrast, moesin antisense PONs did not singly affect cell-cell and cell-substrate adhesion, whereas it partly affected the microvilli structures. These data indicate that ezrin and radixin can be functionally substituted, that moesin has some synergetic functional interaction with ezrin and radixin, and that these ERM family members are involved in cell-cell and cell-substrate adhesion, as well as microvilli formation.  相似文献   

3.
4.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules (CAMs), which comprise a family consisting of four members. Each nectin homophilically and heterophilically trans-interacts and causes cell-cell adhesion. Biochemical, cell biological, and knockout mice studies have revealed that nectins play important roles in formation of many types of cell-cell junctions and cell-cell contacts, including cadherin-based adherens junctions (AJs) and synapses. Mode of action of nectins in the formation of AJs has extensively been investigated. Nectins form initial cell-cell adhesion and recruit E-cadherin to the nectin-based cell-cell adhesion sites. In addition, nectins induce activation of Cdc42 and Rac small G proteins, which eventually enhances the formation of cadherin-based AJs through the reorganization of the actin cytoskeleton. Nectins furthermore heterophilically trans-interact with nectin-like molecules (Necls), other Ig-like CAMs, and assist or modify their various functions, such as cell adhesion, migration, and proliferation. We describe here the roles and modes of action of nectins as CAMs.  相似文献   

5.
A mutant of Dictyostelium discoideum, strain HL260, was isolated based on its failure to bind d-41, a monoclonal antibody that blocks developmentally regulated cell-cell adhesion. The mutant fails to normally acquire cell-cell adhesion as assayed with cells shaken in 10 mM EDTA, but aggregates and and constructs fruiting bodies. Other mutant strains, HL216 and HL220, previously shown to have impaired cell-cell adhesion, also lack the determinant that binds d-41. The three strains all carry mutations in a gene designated mod B, which directs a post-translational modification of several developmentally regulated D. discoideum glycoproteins. Diploids formed between independent mod B mutant haploid strains also lack this determinant and show marked impairment of cell-cell adhesion in EDTA, indicating that mutations in mod B, rather than other mutations not shared by the haploid strains, are related to the adhesion defect. The results are consistent with other evidence that an oligosaccharide carried on several developmentally regulated glycoproteins plays an essential role in EDTA-resistant cell-cell adhesion in D. discoideum. However, this type of adhesion is not essential for morphogenesis in that the only defect detected thus far in mod B mutant strains is that they construct relatively smaller fruiting bodies that contain fewer spores.  相似文献   

6.
Cadherins mediate cell-cell adhesion by linking cell junctions to actin networks. Although several actin regulatory systems have been implicated in cell-cell adhesion, it remains unclear how such systems drive cadherin-actin network formation and how they are regulated to coincide with initiation of adhesion. Previous work implicated VASP in assembly of cell-cell junctions in keratinocytes and the VASP-binding protein zyxin colocalizes with VASP at cell-cell junctions. Here we examine how domains in zyxin and its relative LPP contribute to cell-cell junction assembly. Using a quantitative assay for cell-cell adhesion, we demonstrate that zyxin and LPP function to increase the rate of early cell-cell junction assembly through the VASP-binding ActA repeat region. We also identify the LIM region of zyxin and LPP to be a regulatory domain that blocks function of these proteins. Deletion of the LIM domains drives adhesion and increases VASP level in detergent insoluble cadherin-actin. Dominant-negative zyxin/LPP mutants reduce the rate of adhesion, lower VASP levels in detergent-insoluble cadherin-actin networks, and allow for the accumulation of capping protein at cell-cell contacts. These data implicate the LIM domains of zyxin and LPP in regulating cell-cell junction assembly through VASP.  相似文献   

7.
Wolverton T  Lalande M 《Genomics》2001,76(1-3):66-72
Protocadherins are members of a nonclassic subfamily of calcium-dependent cell-cell adhesion molecules in the cadherin superfamily. Although the extracellular domains have several common structural features, there is no extensive homology between the cytoplasmic domains of protocadherin subfamily members. We have identified a new subclass of protocadherins based on a shared and highly conserved 17-amino-acid cytoplasmic motif. The subclass currently consists of 18 protocadherin members. Two of these, PCDH18 and PCDH19, are novel protocadherins and a third is the human orthologue of mouse Pcdh10. All three genes encode six ectodomain repeats with cadherin-like attributes and, consistent with the structural characteristics of protocadherins, a large first exon encodes the extracellular domain of each gene.  相似文献   

8.
The Ly-6 locus encodes several cell surface proteins of 10-12 kDa. Some members of this multigene family may function in cell signaling and/or cell adhesion processes. T lymphocytes overexpressing Ly-6A.2 (one member of the Ly-6 gene family) protein homotypically aggregate when cultured in vitro. Further analysis of this homotypic aggregation suggests that Ly-6A.2 participates in cell-cell adhesion. These observations indicated the presence of a Ly-6 ligand(s) on the surface of lymphoid cells. In this study we report generation of a hamster mAb, 9AB2, that blocks Ly-6A.2-dependent cell-cell adhesion. The 9AB2 Ab recognizes a 66-kDa glycoprotein with unique tissue expression. The 9AB2 mAb does not bind Ly-6A.2, but coimmunoprecipitates Ly-6A.2 molecule. Moreover, 9AB2 Ag-expressing thymocytes specifically bind to Chinese hamster ovary cells overexpressing Ly-6A.2 protein, and this binding is specifically blocked by 9AB2 and anti-Ly-6A.2 Abs. These results suggest that the 66-kDa protein recognized by 9AB2 mAb is the putative ligand for Ly-6A.2.  相似文献   

9.
Nectins and cadherins, members of cell adhesion molecules (CAMs), are the primary mediators for various types of cell-cell junctions. Here, intermolecular force microscopy (IFM) with force sensitivity at sub-picoNewtons is used to characterize the extracellular trans-interactions between paired nectins and paired cadherins at the single molecule level. Three and four different bound states between paired nectins and paired cadherins are, respectively, identified and characterized based on bond strength distributions where each bound state has a unique lifetime and bond length. The results indicate that multiple domains of nectins act uncooperatively, as a zipper-like multiply bonded system whereas those of cadherins act cooperatively, as a parallel-like multiply bonded system, consistent with a "fork initiation and zipper" hypothesis for the formation of cell-cell adhesion. The observed dynamic properties among multiple bonds are expected to be advantageous such that nectins search adaptively in the cell-cell exploratory recognition process while cadherins slowly stabilize in the cell-cell zippering process.  相似文献   

10.
Monoclonal antibodies block cell-cell adhesion in Dictyostelium discoideum   总被引:6,自引:0,他引:6  
Of 39 monoclonal antibodies that bind the cell surface of aggregating Dictyostelium discoideum, 4 block 76-98% of cell-cell adhesion measured in an in vitro assay. The active antibodies all bind in the range of 10(6) antigenic sites/cell surface and react with more than one material on nitrocellulose blots prepared after polyacrylamide gel electrophoresis of whole aggregating cells in sodium dodecyl sulfate. Active antibodies can by grouped into two classes, each with two very similar members. Class I binds several molecules that are prominent in aggregating cells but scarce or undetectable in vegetative cells, blocks cell adhesion only in the presence of EDTA, and has no detectable effect on cell morphology. Class II binds a wide range of molecules present in both vegetative and aggregating cells, inhibits adhesion as well in the absence as in the presence of EDTA, and reversibly alters cell shape.  相似文献   

11.
A large number of cadherins and cadherin-related proteins are expressed in different tissues of a variety of multicellular organisms. These proteins share one property: their extracellular domains consist of multiple repeats of a cadherin-specific motif. A recent structure study has shown that the cadherin repeats roughly corresponding to the folding unit of the extracellular domains. The members of the cadherin superfamily are roughly classified into two groups, classical type cadherins proteins and protocadherin type according to their structural properties. These proteins appear to be derived from a common ancestor that might have cadherin repeats similar to those of the current protocadherins, and to have common functional properties. Among various cadherins, E-cadherin was the first to be identified as a Ca2+-dependent homophilic adhesion protein. Recent knockout mice experiments have proven its biological role, but there are still several puzzling unsolved properties of the cell adhesion activity. Other members of cadherin superfamily show divergent properties and many lack some of the expected properties of cell adhesion protein. Since recent studies of various adhesion proteins reveal that they are involved in different signal transduction pathways, the idea that the new members of cadherin superfamily may participate in more general cell-cell interaction processes including signal transduction is an intriguing hypothesis. The cadherin superfamily is structurally divergent and possibly functionally divergent as well. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease, but its physiological function and that of its mammalian paralogs, the amyloid precursor-like proteins 1 and 2 (APLPs), is still poorly understood. APP has been proposed to form dimers, a process that could promote cell adhesion via trans-dimerization. We investigated the dimerization and cell adhesion properties of APP/APLPs and provide evidence that all three paralogs are capable of forming homo- and heterocomplexes. Moreover, we show that trans-interaction of APP family proteins promotes cell-cell adhesion in a homo- and heterotypic fashion and that endogenous APLP2 is required for cell-cell adhesion in mouse embryonic fibroblasts. We further demonstrate interaction of all the three APP family members in mouse brain, genetic interdependence, and molecular interaction of APP and APLPs in synaptically enriched membrane compartments. Together, our results provide evidence that homo- and heterocomplexes of APP/APLPs promote trans-cellular adhesion in vivo.  相似文献   

13.
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.  相似文献   

14.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

15.
We have isolated a novel cell-cell adhesion system localized at cadherin-based adherens junctions (AJs). This system consists of at least nectin, a Ca(2+)-independent immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein, that connects nectin to the actin cytoskeleton. Nectin constitutes a family consisting of two members, nectin-1 and -2. We have isolated here a third member of the nectin family and named it nectin-3. Nectin-3 has three splicing variants, nectin-3alpha (biggest), -3beta (middle), and -3gamma (smallest). Like nectin-1 and -2, nectin-3alpha consists of three extracellular immunoglobulin-like domains, a transmembrane segment, and a cytoplasmic region with the C-terminal consensus motif for binding to the PDZ domain. Nectin-3alpha formed a cis-homo-dimer and showed Ca(2+)-independent trans-homo-interaction to cause homophilic cell-cell adhesion. Nectin-3alpha furthermore showed trans-hetero-interaction with nectin-1 or -2 but did not form a cis-hetero-dimer with nectin-1 or -2. Nectin-1 did not show trans-hetero-interaction with nectin-2. The affinity of trans-hetero-interaction of nectin-3alpha with nectin-1 or -2 was higher than that of trans-homo-interaction of nectin-1, -2, or -3alpha. Nectin-2 and -3 were ubiquitously expressed, whereas nectin-1 was abundantly expressed in brain. Nectin-3alpha was colocalized with nectin-2 at cadherin-based AJs and interacted with afadin. These results indicate that the nectin family consists of at least three members, nectin-1, -2, and -3, all of which show homophilic and heterophilic cell-cell adhesion activities and are localized at cadherin-based AJs.  相似文献   

16.
Wnt-1 homologs have been identified in invertebrates and vertebrates and play important roles in cellular differentiation and organization. In Drosophila, the products of the segment polarity genes wingless (the Wnt-1 homolog) and armadillo participate in a signal transduction pathway important for cellular boundary formation in embryonic development, but functional interactions between the proteins are unknown. We have examined Wnt-1 function in mammalian cells in which armadillo (beta-catenin and plakoglobin) is known to bind to and regulate cadherin cell adhesion proteins. We show that Wnt-1 expression results in the accumulation of beta-catenin and plakoglobin. In addition, binding of beta-catenin to the cell adhesion protein, cadherin, is stabilized, resulting in a concomitant increase in the strength of calcium-dependent cell-cell adhesion. Thus, a consequence of the functional interaction between Wnt-1 and armadillo family members is the strengthening of cell-cell adhesion, which may lead to the specification of cellular boundaries.  相似文献   

17.
It is thought that the concentration of classic cadherins at cell-cell adhesion sites is essential for generating strong cell-cell adhesion activity, but the mechanism is not well understood. To clarify the structural basis of the concentration process and the cell adhesion activity, we constructed various mutants of cadherin-4 and examined the adhesion properties of the transfectants. A deletion mutant lacking the entire cytoplasmic domain had weak, but significant Ca(2+)-dependent cell adhesion activity. Interestingly, the deletion mutant showed intrinsic cluster formation in the absence of cell-cell adhesion, possible lateral cluster formation. The cytoplasmic domain-deleted cadherin-4 containing the mutation of Trp-2 to Ala, which is known to inhibit the strand dimer formation required for the cell-cell adhesion, retained the possible activity of lateral cluster formation, supporting this notion. These results suggest that the extracellular domain has intrinsic activity of lateral cluster formation. Indeed, deletion of a cadherin repeat in the extracellular domain significantly reduced or abolished the lateral cluster formation as well as the concentration of cadherin-4 at cell-cell contact sites and cell adhesion activity. When transfectants of the cytoplasmic domain-deleted cadherin-4 made cell-cell contact and formed intimate cell-cell adhesion, the lateral clusters of cadherin-4 initially gathered at cell-cell contact sites, and a smooth linear concentration was gradually formed along the cell-cell adhesion interface. The results suggest that the lateral cluster formation is involved in the concentration process of cadherin-4 at cell-cell adhesion sites, hence in the strong cell adhesion activity of cadherin-4 as well.  相似文献   

18.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.  相似文献   

19.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.Key words: Rap1GAP, cell adhesion, matrix adhesion, Rap, E-cadherin, β-catenin  相似文献   

20.
Abstract

Receptor protein tyrosine phosphatases (RPTPs) have cell adhesion molecule–like extracellular domains coupled to cytoplasmic tyrosine phosphatase domains. PTPμ is the prototypical member of the type IIb subfamily of RPTPs, which includes PTPρ, PTPκ, and PCP-2. The authors performed the first comprehensive analysis of the subfamily in one system, examining adhesion and antibody recognition. The authors evaluated if antibodies that they developed to detect PTPmu also recognized other subfamily members. Notably, each antibody recognizes distinct subsets of type IIb RPTPs. PTPμ, PTPρ, and PTPκ have all been shown to mediate cell-cell aggregation, and prior work with PCP-2 indicated that it can mediate bead aggregation in vitro. This study reveals that PCP-2 is unique among the type IIb RPTPs in that it does not mediate cell-cell aggregation via homophilic binding. The authors conclude from these experiments that PCP-2 is likely to have a distinct biological function other than cell-cell aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号