首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the reduction of Corynebacterium sarcosine oxidase [EC 1.5.3.1] by dithiothreitol (DTT) was investigated. The reduction followed biphasic kinetics with second-order rate constants of 54 M-1 X S-1 and 5.4 M-1 X S-1 for the respective phases. When the oxidized enzyme was titrated with sarcosine under anaerobic conditions, no intermediate, such as a semiquinone or a charge-transfer complex, appeared during the reduction of the enzyme. On the other hand, on DTT titration, an intermediate with a semiquinoid character appeared, and its formation was maximum when half of the total FAD was reduced. An oxidized semiapoenzyme, which had lost 45% of the noncovalently-bound FAD present in the native enzyme, also showed biphasic kinetics in the reduction with DTT. The second-order rate constant was found to be 38 M-1 X S-1 for the fast phase. An intermediate was also formed and its concentration, estimated by electron spin resonance (ESR) measurement, was found to agree with that of the noncovalently-bound FAD. In addition, the oxidized semiapoenzyme, which had lost 95% of the noncovalently-bound FAD present in the native enzyme, was reduced with DTT much more slowly than the native enzyme. In this case, the second-order rate constant was found to be 0.4 M-1 X S-1, and no intermediate was observed during the titration with DTT. On the basis of these data, it is suggested that the noncovalently-bound FAD accepts electrons directly from DTT in the fast phase through the semiquinoid form, while the covalently-bound FAD accepts electrons from the reduced noncovalently-bound FAD in the slow phase without forming an intermediate.  相似文献   

2.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(α-L-guluronate)lyase, which was active on poly(α-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the β-form of the enzyme molecule and resembled poly(β-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(α-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The β-sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   

3.
Sarcosine oxidase was purified to homogeneity from the cell extract of Cylindrocarpon didymum M–1, aerobically grown in medium containing choline as the carbon source. The molecular weight of the enzyme was estimated to be 45,000 by gel filtration method and 48,000 by the sodium dodecylsulfate disc gel electrophoresis method. The enzyme exhibited an absorption spectrum with maxima at 277 and 450 run and shoulders at 370 and 470 nm. The anaerobic addition of sarcosine to the enzyme resulted in the disappearance of the peak at 450 nm. The enzyme contained one mol of covalently bound FAD per mol of enzyme. Enzyme activity was inhibited by Ag+, Cu2+, Hg2+, p-chloromercuribenzoate and iodoacetate. The enzyme oxidized sarcosine but was inert toward choline, betaine, dimethylglycine and N-methyl amino acids. Km and Vmax values for sarcosine were 1.8 ihm and 26.2 μmol/min/mg, respectively. The enzyme catalyzed the following reaction: Sarcosine+O2+H2O→glycine +formaldehyde+H2O2.  相似文献   

4.
A sarcosine oxidase (sarcosine: oxygen oxidoreductase (demethylating), EC 1.5.3.1) isolated from Corynebacterium sp. U-96 contains both covalently bound FAD and noncovalently bound FAD. The noncovalent FAD reacts with sarcosine, the covalent FAD with molecular oxygen (Jorns, M.S. (1985) Biochemistry 24, 3189-3194). To clarify the reaction mechanism of the enzyme, kinetic investigations were performed by the stopped-flow method as well as by analysis of the overall reaction. The absorption spectrum of the enzyme in the steady state was very similar to that of the oxidized enzyme, and no intermediate enzyme species, such as a semiquinoid flavin, was detected. The rate for anaerobic reduction of the noncovalently bound FAD and the covalently bound FAD by sarcosine were 31 and 6.7 s-1, respectively. The latter value was smaller than the value of respective Vmax/e0 obtained by the overall reaction kinetics (Vmax/e0: the maximum velocity per enzyme concentration). Both rate constants for oxidation of the two FADs by molecular oxygen were 100 s-1. A reaction scheme of sarcosine oxidase is proposed to account for the data obtained; 70% of the enzyme functions via a fully reduced enzyme, and 30% of the enzyme goes along a side-path, without forming the fully reduced enzyme. In addition, it is suggested that the reactivity of noncovalently bound FAD with sarcosine is affected by the oxidation-reduction state of the covalently bound FAD, in contrast to the reactivity of the covalently bound FAD with molecular oxygen, which is independent of the oxidation-reduction state of the noncovalently bound FAD.  相似文献   

5.
D-Amino acid aminotransferase, purified to homogeneity and crystallized from Bacillus sphaericus, has a molecular weight of about 60,000 and consists of two subunits identical in molecular weight (30,000). The enzyme exhibits absorption maxima at 280, 330, and 415 nm, which are independent of the pH (5.5 to 10.0), and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. One of the pyridoxal-5'-P, absorbing at 415 nm, is bound in an aldimine linkage to the epsilon-amino group of a lysine residue of the protein, and is released by incubation with phenylhydrazine to yield the catalytically inactive form. The inactive form, which is reactivated by addition of pyridoxal 5'phosphate, still has a 330 nm peak and contains 1 mol of pyridoxal 5'-phosphate. Therefore, this form is regarded as a semiapoenzyme. The holoenzyme shows negative circular dichroic bands at 330 and 415 nm. D-Amino acid aminotransferase catalyzes alpha transamination of various D-amino acids and alpha-keto acids. D-Alanine, D-alpha-aminobutyrate and D-glutamate, and alpha-ketoglutarate, pyruvate, and alpha-ketobutyrate are the preferred amino donors and acceptors, respectively. The enzyme activity is significantly affected by both the carbonyl and sulfhydryl reagents. The Michaelis constants are as follows: D-alanine (1.3 and 4.2 mM with alpha-ketobutyrate and alpha-ketoglutarate, respictively), alpha-ketobutyrate (14 mM withD-alanine), alpha-ketoglutarate (3.4 mM with D-alanine), pyridoxal 5'-phosphate (2.3 muM) and pyridoxamine 5'-phosphate (25 muM).  相似文献   

6.
Crystalline aromatic l-amino acid decarboxylase from Micrococcus percitreus is inactive in the absence of pyridoxal phosphate (PLP). The inactive form of the enzyme shows absorption at 340 nm and contains one mol of PLP per mol of enzyme. Binding of PLP to the inactive form is accompanied by a pronounced increase in absorbance at 415 nm. The amount of PLP that binds to this holoenzyme is 2 mol per mol of enzyme. The inactive half-resolved form, i. e. semiapoenzyme, is obtained again by dialysis of the holoenzyme against phosphate buffer. When the semiapoenzyme is dialyzed against phosphate buffer containing 3,4-dihydroxyphenyl-l-alanine, it loses the absorption at 340 nm with the loss of PLP. This apoenzyme regains the activity and absorption at 340 nm and 415 nm on association with PLP.  相似文献   

7.
ilvE gene of Escherichia coli was inserted into the region downstream of the tac promotor. As a result, the branched-chain amino acid aminotransferase was overproduced by about a hundred-fold in E. coli W3110. The overproduced aminotransferase was purified from cell extracts about 40-fold to homogeneity. Chemical and physicochemical analyses confirmed that it was a product of the ilvE gene. The enzyme existed in a hexamer with a subunit molecular weight of 34,000; the double trimer model of the enzyme presumed by the previous chemical cross-linking experiments (Lee-Peng, F.-C. et al. (1979) J. bacteriol. 139, 339-345) was supported by electron micrographs. The circular dichroic (CD) spectrum of branch-chain amino acid aminotransferase had double negative maxima at 210 and 220 nm. The alpha-helical content was estimated to be about 40% from the CD spectrum in the region of 200 to 250 nm. The absorption spectrum of the enzyme showed two peaks at 330 and 410 nm. There was no pH-dependent spectral shift. The CD spectrum of the coenzyme, pyridoxal 5'-phosphate, had negative peaks at 330 and 410 nm. These spectral properties of branched-chain amino acid aminotransferase were quite different from those of E. coli aspartate aminotransferase. Each subunit bound approximately 1 mol of pyridoxal 5'-phosphate. A lysyl residue, which forms a Schiff base with the aldehyde group of the pyridoxal 5'-phosphate, was identified in the primary structure of the enzyme.  相似文献   

8.
Denaturation of covalently closed circular duplex replicative form (RF) I at high pH yields a form with high sedimentation coefficient even after neutralization. This form allowed less ethidium bromide to be intercalated but yielded a circular dichroic spectrum which had reduced magnitude of both positive circular dichroism at 273 nm and negative circular dichroism at 245 nm. The circular dichroic spectrum of this form is similar to that of RFV DNA. Gel electrophoretic analysis of this DNA revealed that, although part is retained in the groove, another part appeared as a faster-moving band, which we designated as RF Id. This faster-moving form is cleaved by the restriction endonuclease BamHI at a single site giving a single RF III, comigrating with the RF III obtained from RF I by BamHI cleavage. This signifies that the two strands of RF I did not slide over one another during the formation of RF Id as suggested previously.  相似文献   

9.
Dimethylglycine oxidase was purified to homogeneity from the cell extract of Cylindrocarpon didymum M–1, aerobically grown in medium containing betaine as the carbon source. The molecular weight of the enzyme was estimated to be 170,000 by the gel filtration method and 180,000 by the sedimentation velocity method. The enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 277, 345 and 450 nm. The enzyme consisted of two identical subunits with a molecular weight of 82,000, and contained two mol of FAD per mol of enzyme. The flavin was shown to be covalently bound to the protein. The enzyme was inactivated by Ag+, Hg2+, Zn2+ and iodoacetate. The enzyme oxidized dimethylglycine but was inert toward choline, betaine, sarcosine and alkylamines. Km and Vmax values for dimethylglycine were 9.1 mm and 1.22 μmol/min/mg, respectively. The enzyme catalyzed the following reaction: Dimethylglycine+O2+H2O → sarcosine+formaldehyde+H2O2.  相似文献   

10.
Interaction of several representative folate, quinazoline and pyridine nucleotide derivatives with dihydrofolate reductase from amethopterin-resistant Lactobacillus casei induces dramatic changes in its circular dichroic spectral properties. The binding of dihydrofolate induces a large extrinsic Cotton effect at 295 nm ([theta] = 113 800 deg . cm2 . dm-1). The generation of this band by dihydrofolate is strictly dependent on complex formation with a single substrate binding site and a KD = 7 . 10(-6) M. The other binary complexes examined include the enzyme . NADPH, enzyme . amethopterin, enzyme . folate, and enzyme . methasquin. All such complexes differ in spectral detail, the negative ellipticity at 330 nm being characteristic of the "folate site" complexes. The circular dichroic spectrum of the ternary complex of reductase . NADPH . methotrexate shows a positive symmetrical band centered at 360 nm ([theta] - 32 000 deg . cm2 . dm-1). Since both of the corresponding binary complexes exhibit negative bands in this region, this induced band represents a unique molecular property of the ternary complex. Chemical modification of a single tryptophan residue of the enzyme, as determined from magnetic circular dichroism spectra, results in a complete loss in the ability to bind either dihydrofolate or NADPH.  相似文献   

11.
H D Zeller  R Hille  M S Jorns 《Biochemistry》1989,28(12):5145-5154
Corynebacterial sarcosine oxidase contains both covalently and noncovalently bound FAD and forms complexes with various heterocyclic carboxylic acids (D-proline and 2-furoic, 2-pyrrolecarboxylic, and 2-thiophenecarboxylic acids). 2-Furoic acid, a competitive inhibitor with respect to sarcosine, selectively perturbs the absorption spectrum of the noncovalent flavin, suggesting that the enzyme has a single sarcosine binding site near the noncovalent flavin. Several heterocyclic amines have been identified as new substrates for the enzyme. Similar reactivity is observed with L-proline and L-pipecolic acid whereas L-2-azetidine-carboxylic acid is less reactive. Turnover with L-proline is slow (TN = 4.4 min-1) as compared with sarcosine (TN = 1000 min-1). Anaerobic reduction of the enzyme with heterocyclic amine substrates at pH 8.0 occurs as a biphasic reaction. A similar long-wavelength intermediate is formed in the initial fast phase of each reaction and then decays in a slower second phase to yield 1,5-dihydroFAD. The slow phase is not kinetically significant during aerobic turnover at pH 8.0 and is absent when the anaerobic reactions are conducted at pH 7.0. EPR and other studies at pH 7.0 show that the long-wavelength species is a half-reduced form of the enzyme (1 electron/substrate-reducible flavin) containing 0.9 mol of flavin radical/mol of substrate-reducible flavin. This biradical intermediate exhibits an absorption spectrum similar to that expected for a 50:50 mixture of red anionic and blue neutral flavin radicals. A similar long-wavelength species is observed during titration of the enzyme with sarcosine and other reductants. Studies with L-proline suggest that reduction of the enzyme involves initial transfer of two electrons to the noncovalent flavin. The covalent flavin is not required and can be complexed with sulfite without affecting the rate of electron transfer. The initial half-reduced form of the enzyme appears to be rapidly converted to the biradical form via comproportionation of the reduced noncovalent flavin with the oxidized covalent flavin.  相似文献   

12.
Zinc, the catalytically essential metal of angiotensin converting enzyme (ACE), has been replaced by cobalt(II) to give an active, chromophoric enzyme that is spectroscopically responsive to inhibitor binding. Visible absorption spectroscopy and magnetic circular dichroic spectropolarimetry have been used to characterize the catalytic metal binding site in both the cobalt enzyme and in several enzyme-inhibitor complexes. The visible absorption spectrum of cobalt ACE exhibits a single broad maximum (525 nm) of relatively low absorptivity (epsilon = 75 M-1 cm-1). In contrast, the spectra of enzyme-inhibitor complexes display more clearly defined maxima at longer wavelengths (525-637 nm) and of markedly higher absorptivities (130-560 M-1 cm-1). The large spectral response indicates that changes in the cobalt ion coordination sphere occur on inhibitor binding. Magnetic circular dichroic spectropolarimetry has shown that the metal coordination geometry in the inhibitor complexes is tetrahedral and of higher symmetry than in cobalt ACE alone. The presence of sulfur----cobalt charge-transfer bands in both the visible absorption and magnetic circular dichroic spectra of the cobalt ACE-Captopril complex confirm direct ligation of the thiol group of the inhibitor to the active-site metal.  相似文献   

13.
Extracellular alginate lyase was purified from the culture supernatant of Corynebacterium sp. isolated from the sewage of a sea tangle processing factory in order to elucidate the structure—function relationship of alginate lyase. The electrophoretically homogeneous enzyme was shown to have a molecular mass of 27 kDa by sodium dodecyl sulfate (SDS)—polyacrylamide gel electrophoresis (PAGE) and by gel filtration, with an isoelectric point of 7.3. The molecular mass from amino acid analysis was 28.644 kDa. The optimal pH and temperature for the enzyme reaction were around 7.0 and 55°C, respectively. Metal compounds such as MnCl2 and NiCl2 increased the enzyme activity. The enzyme was identified as the endolytic poly(-L-guluronate)lyase, which was active on poly(-L-1,4-guluronate) and caused a rapid decrease in the viscosity of alginate solution. Measurement of the far-UV circular dichroic spectrum of the enzyme molecule gave a spectrum with a deep trough at 215nm accompanied by a shallow one at around 237 nm, and with a high peak at 197 nm and a much lower one at 230 nm. This spectrum was most likely to be that of the -form of the enzyme molecule and resembled poly(-D-mannuronate)lyase from Turbo cornutus (wreath shell) and poly(-L-guluronate)lyase from Vibrio sp. (marine bacterium). The near-UV circular dichroic spectrum was characteristic for aromatic amino acid residues. In the presence of 6 M urea, these spectra changed drastically in the near-UV and a little in the far-UV with the disappearance of the enzyme activity. Removal of the denaturant in the enzyme solution by dialysis restored both the activity and inherent circular dichroic spectra. The -sheets observed in alginate lyases as the major ordered structure seem to be a common conformation for the lyases.  相似文献   

14.
Summary UV irradiation of the chromatin caused an increase of the positive circular dichroic band in the vicinity of 275 nm (corresponding to DNA) and a deepening of the negative band of proteins at about 225 nm. These changes in the circular dichroic spectrum are monotonous in the range of doses studied (< 6 × 104 J.m–2). The increase of the positive circular dichroic band probably reflects the occurrence of local conformational changes in DNA, which include changes in base position (tilting, distance from helix axis) in the close neighbourhood of photoproducts. The presence of photoproducts in chromatin reduces changes in its circular dichroic spectra with temperature.  相似文献   

15.
The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site.  相似文献   

16.
《BBA》1986,849(2):203-210
A highly active O2-evolving Photosystem II complex which was greatly depleted of phycobiliproteins was isolated from the cyanobacterium Anacystis nidulans. This complex contained the flavoprotein with l-amino acid oxidase activity which we have previously shown to be present in thylakoid preparations of this cyanobacterium (Pistorius, E.K. and Voss, H. (1982) Eur. J. Biochem. 126, 203–209). One of the most prominent polypeptides in this O2-evolving Photosystem II complex had a molecular weight of 49 kDa. This polypeptide co-chromatographed on SDS-polyacrylamide gels with the purified l-amino acid oxidase which consists of two subunits of 49 kDa. The antagonistic effect of CaCl2 on the two examined reactions could also be demonstrated with this O2-evolving Photosystem II complex: CaCl2 stimulated photosynthetic O2 evolution, but inhibited the l-amino acid oxidase activity. Both reactions were inhibited by o-phenanthroline. These results further support a functional relationship between the flavoprotein with l-amino acid oxidase activity and Photosystem II activities in A. nidulans. However, we only found 1 mol FAD per 350–650 mol chlorophyll, although 1 gatom Mn per 5–10 mol chlorophyll was present. When we assume a photosynthetic unit of about 40 chlorophylls, then in most preparations the FAD values were more than a factor of 10 too low. Results which we obtained with the purified l-amino acid oxidase showed that the FAD values were in most enzyme samples lower than the theoretically expected value of 2 mol FAD per mol enzyme. Moreover, in some cases the absorption spectrum of the enzyme showed substantial deviations from the spectrum of oxidized FAD. These experiments indicated that the flavin in the enzyme could partly exist in a form which was different from ‘authentic oxidized FAD’. We do not yet know the chemical nature of this ‘modified flavin’.  相似文献   

17.
DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans   总被引:10,自引:0,他引:10  
Photoreactivating enzyme, which specifically monomerizes pyrimidine dimers in UV-irradiated DNA, was purified 21,000-fold from the cyanobacterium Anacystis nidulans to apparent homogeneity with 41% overall yield. The enzyme consists of a single protein chain with 53,000 molecular weight. Maximal activity was found at pH 6.2 and 0.1 M NaCl. Purified photoreactivating enzyme exhibits a marked absorption spectrum with a main band in the blue region (maximum 437 nm), a protein band (maximum 266 nm), and a low intensity band above 500 nm. The molar extinction coefficient of native enzyme was estimated 53,000 at 437 nm. The action spectrum for photoreactivation shows maximal activity at 440 nm and correlates closely with the 437-nm absorption band. The enzyme contains two different intrinsic chromophores in equimolar amounts, which were identified as 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) and (reduced) FAD. The low intensity absorption band of native photoreactivating enzyme exhibits a shoulder at 498 and maxima at 588 and 634 nm. This band is attributed to a neutral FAD semiquinone radical which accounts for the major part of the FAD present in dark equilibrated enzyme. Preillumination at 585 nm bleaches the semiquinone spectrum due to formation of fully reduced FAD, but exposure to air in the dark restores the spectrum completely. On preillumination at 437 nm the disappearance of FAD semiquinone is more rapid, indicating that the photoreduction is sensitized by the 8-hydroxy-5-deazaflavin chromophore. The 8-hydroxy-5-deazaflavin and possibly also the reduced FAD chromophore appear to act as a primary photon acceptor in the photoreactivation process.  相似文献   

18.
The circular dichroic spectrum of synaptosomal membranes was highly reproducible and qualitatively similar to that of erythrocyte membranes. The spectrum exhibited a minimum at 224 nm, a shoulder at 212 nm and a maximum at 195 nm. The mean molar ellipticity at the maximum and minimum was approximately +8000 and –8000 respectively. The protein components were the dominant source of the CD signal. Quantitative estimates showed negligible contributions to the spectrum from cholesterol, phosphatidyl serine and TV-acyl sugars. Phospholine iodide, eserine, decamethonium, tetramethyl ammonium chloride and acetylcholine at concentrations of 10-3 and 10-4M did not produce detectable perturbations of the membrane circular dichroism. The circular dichroic spectrum of d-tubocurarine exhibited a maximum at 198 nm and a minimum at 212 nm. Addition of d-tubocurarine to membrane suspensions in the cuvette yielded a complex spectrum representing the result of a simple additive combination of the circular dichroic spectra of d-tubocurarine and the membranes. However, preincubation of the membranes with 3 x 10-3m d-tubocurarine at 0-4°C for 5-10 min followed by sedimentation, several washes and resuspension resulted in a circular dichroic spectrum which appeared to involve no change in the membrane contribution, but there was a substantial decrease in the molar ellipticity of the d-tubocurarine remaining with the membranes.  相似文献   

19.
The overall reaction kinetics of Corynebacterium sarcosine oxidase were investigated and the reaction was shown to follow a ping-pong, bi-bi mechanism with two substrates, sarcosine and molecular oxygen. Sarcosine analogs, such as acetate, propionate and methoxyacetate, were competitive inhibitors of the reaction. Acetate caused characteristic alterations in optical and circular dichroic spectra, indicating that the microenvironment of the substrate-binding region of the enzyme increased in hydrophobicity on binding with the substrate analog. The dissociation constants of the analogs calculated from the spectral changes were in agreement with the kinetic inhibition constants. Inorganic metallic ions were also inhibitory. Of interest was the finding that the inhibition by Hg2+ was proportional to the square of its concentration, which suggests that at least two sulfhydryl groups are related to the catalytic activity of the enzyme.  相似文献   

20.
A green enzyme from Clostridium aminovalericum with valeryl-CoA dehydrogenase activity was purified to homogeneity (169 +/- 3 kDa) and crystallized. By SDS/PAGE, one type of subunit (42 kDa) was detected indicating a homotetrameric structure. The unusual ultraviolet/visible spectrum of the green enzyme (maxima at 394 nm, 438 nm and 715 nm) was converted to a normal flavoprotein spectrum either by reduction with dithionite and reoxidation under air, or by removal of the prosthetic group at pH 2 and reconstitution with FAD (not FMN). Besides FAD (4 mol/169 kDa), the enzyme contained 4 mol of a CoA ester which was similar but not identical to 5-hydroxy-2-pentenoyl-CoA. The reconstituted holoenzyme as well as the native green enzyme, but not the apoenzyme, catalysed the reversible dehydration of 5-hydroxyvaleryl-CoA to 4-pentenoyl-CoA in the absence of an external electron acceptor. In its presence (preferentially ferricenium ion), the green or yellow enzyme catalysed the formation of (E)-5-hydroxy-2-pentenoyl-CoA and 2,4-pentadienoyl-CoA either from 4-pentenoyl-CoA or from 5-hydroxyvaleryl-CoA. The reversible hydration of 2,4-pentadienoyl-CoA to (E)-5-hydroxy-2-pentenoyl-CoA was mediated by both enzymes as well as by the apoenzyme in the absence of FAD. Hydration of 4-pentenoate in 2H2O yielded optically active 5-hydroxy[2,4-2H2]valerate by the combined action of 5-hydroxyvalerate CoA-transferase, the green dehydratase and catalytical amounts of acetyl-CoA. The data show that the reversible hydration of the isolated double bond of 4-pentenoyl-CoA to 5-hydroxyvaleryl-CoA. which apparently violates the Markovnikov rule, is preceded by oxidation to 2,4-pentadienoyl-CoA. The latter compound, a vinyl analogue of 2-enoyl-CoA, is then easily hydrated to (E)-5-hydroxy-2-pentenoyl-CoA and finally reduced to 5-hydroxyvaleryl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号