首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Glutathione peroxidase (GPX) and glutathione S-transferase (GST) are key enzymes of cellular detoxification systems that defend cells against reactive oxygen species (ROS). In this study, we isolated the GPX and GST full-length cDNA and investigated the expression of these mRNAs from livers of olive flounder during salinity changes (35, 17.5, 8.75, 4 and 0 psu) by quantitative PCR (QPCR). GPX cDNA consists of 429 base pairs (bp) and encodes a protein of 142 amino acids. GST cDNA consists of 663 bp and encodes a protein of 220 amino acids. Both of GPX and GST mRNA expressions were the highest in 4 psu and then decreased in 0 psu. Also, the levels of Na(+) and Cl(-) decreased, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased during the experimental period. These findings provide molecular characterization of GPX and GST in olive flounder and suggest that GPX and GST play important roles in detoxification of ROS, thereby these maybe indicators of oxidative stress responses by salinity changes in olive flounder.  相似文献   

2.
The effects of nutritional conditions on alterations in condition factor, liver-somatic index, and hepatocyte ultrastructure in the olive flounder Paralichthys olivaceus were examined. Twelve weeks of starvation significantly decreased the condition factor and the liver-somatic index in the olive flounder. Hepatocytes underwent marked ultrastructural changes in response to 12 weeks of starvation. Compared to those of the initial control and fed group, the prominent features characterizing the hepatocytes of the starved group were: reduction in cell and nucleus size; apparent loss of nucleoli; condensation of chromatin; loss of stored glycogen; reduction of endoplasmic reticulum profile; increase in the number of electron-dense bodies containing large amounts of iron; and increased mitochondrial size. Results suggest that the histological changes caused by ultrastructural alterations in the hepatocytes can be used as alternative indicators to identify starvation in cultured P. olivaceus.  相似文献   

3.
Estrogen receptor (ERalpha) modifies the expression of genes involved in cell growth, proliferation and differentiation through binding to estrogen response elements (EREs) located in a number of gene promoters, so the ERalpha gene is considered as an important factor affecting reproductive endocrinology in Japanese flounder (Paralichthys olivaceus). In this study, twelve single nucleotide polymorphisms (SNPs) within eight CDS exons and 1 kb of 3'-UTR of the ERalpha gene were tested to association with four reproductive traits in a population of 119 Japanese flounder individuals with polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP). The association analysis of SNPs within Japanese flounder ERalpha gene with the reproductive traits was carried out using General Linear Model (GLM) estimation. Results indicated that two SNPs in the exon4 of ERalpha gene, P1 (A803G and C864T), were significantly associated with hepatosomatic index (HSI) (P<0.05) in female Japanese flounder. Other ten SNPs in 3'-UTR associated to serum 17beta-estradiol (E(2)) and HSI showed that P2 (A1982T) was significantly associated with E(2) (P<0.01) and P3 (A2149G, 2181TTACAAG2182 insertion or deletion, T2324G, A2359G and G2391A) was significantly associated with HSI (P<0.05) in female Japanese flounder. However, P2 (A1982T) and P4 (G2256T, T2294C, T2309G and A2333T) had significant effects on E(2) (P<0.05 and P<0.01, respectively) in male Japanese flounder. In addition, there were significant associations between diplotype D1 based on fourteen SNPs and reproductive traits. The genetic effects for HSI (female) or E(2) (male) of diplotype D1 were significantly higher than those of other eight diplotypes (P<0.05), respectively. Our findings implied that P1 of ERalpha gene affecting the reproductive traits could be a potential QTN (quantitative trait nucleotide) which would be useful genetic marker in the selection of some reproductive traits for its in Japanese flounder.  相似文献   

4.
The phospholipase D1 (PLD1) cDNA, designated PoPLD, encoding a predicted protein of 1053 amino acids in olive flounder (Paralichthys olivaceus) has been cloned. The deduced amino acid sequence shares high identity with that of PLD1s and PLD2 in human, rat and mouse. The phylogenic analysis and sequence comparison of PoPLD with other PLD isozymes were found to be closely related to the PLD1 isozyme in primary structure. The tissue expression analysis of PoPLD showed that the mRNA of PoPLD was predominantly expressed in the brain, gullet, muscle, stomach, head kidney, pyloric caeca, intestine and gill. The expression of the PoPLD gene was examined in various tissues of flounder by RT-PCR following stimulation with LPS and compared also with that of the inflammatory cytokines IL-1beta and IL-8 in various tissues of the stimulated flounder. This provides indirect evidence that PLD1 might have a relevant role in immune responses against pathogens and in inflammation. In addition, the recombinant protein of PoPLD (GFP-PoPLD), which demonstrated a phosphatidylcholine (PC)-hydrolyzing activity, was partially localized as a distinct ring-shaped form surrounding the rim of the nucleus in EPC cells. Together, our results suggest that PoPLD is similar to the mammalian PLD1 isoform, is generally widespread within olive flounder tissue, might have a relevant role in the fish immune system against pathogens and specifically may be localized in the subcellular membranes of the nuclear rim in EPC cells.  相似文献   

5.
We described the isolation and characterization of 27 new microsatellite loci from olive flounder, Paralichthys olivaceus. All loci were found to be polymorphic, and had between five and 22 alleles with observed heterozygosity ranging from 0.161 to 1.0 in 31 individuals examined. These micorsatellite makers are likely to be useful for studies of genome mapping, mating systems and population genetics in this species.  相似文献   

6.
7.
In aquaculture, feeding is essential for the maintenance of metabolic processes and homoeostasis of fish. However, fasting acts as a stressor. In this study, we investigated the effect of circadian rhythm under various LED wavelengths [blue (460 nm), green (520 nm) and red (630 nm)] and two light intensities (0.3 and 0.6 W m?2) over a 9-days period in the olive flounder (Paralichthys olivaceus). We analysed clock genes like period 2 (Per 2) and cryptochrome 1 (Cry 1), and serotonin and arylalkylamine-N-acetyltransferase 2 (AANAT 2), which control circadian rhythms. Per 2, Cry 1, serotonin and AANAT 2 were significantly decreased during the starvation period compared to the normal feeding group. Nevertheless, their levels increased in the groups exposed to green- and blue LED light during the experimental period. These results confirmed that green and blue wavelengths are effective in maintaining the circadian rhythm in olive flounder.  相似文献   

8.
Wang  Ling  Tan  Xungang  Zou  Congcong  Wang  Lijuan  Wu  Zhihao  Zou  Yuxia  Song  Zongcheng  You  Feng 《Molecular biology reports》2021,48(4):3529-3540

Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5′ untranslated region (5′UTR), and a 1499 bp 3′ untranslated region (3′UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3′UTR, and the second fragment was entirely located in 3′UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5′UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3′UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5′UTR and the repetitive sequences in 3′UTR might contain some regulatory elements for the cilia.

  相似文献   

9.
The cDNA sequence of the Japanese flounder (Paralychthys olivaceus) IgD has been previously reported (GenBank accession no. AB052658) and this was followed by the detection of IgD mRNA expression in some flounder organ tissues. However, it has not been determined whether the flounder IgD gene is virtually expressed into IgD protein. To characterize the flounder immunoglobulins utilized in elucidating the mechanism, evolution and diversity of the flounder immune system, antibodies specific to IgD and IgM were necessary. In the present study, partial flounder recombinant IgD (rIgD), IgM (rIgM) and the conserved regions of IgD and IgM (rCIg) were produced by cloning the cDNA sequence using isotype specific primers which were designed to produce unique fragments of IgD and IgM specific amino acid sequences. The production of recombinant Igs was ascertained by SDS-gel electrophoresis and immunoblot analysis using anti-T7 d Taq antibody. The produced recombinant Igs were purified using affinity columns, and used as immunogens. Antibodies specific to the isotype of flounder Igs were generated by immunizing rabbits with rfIgs and the antibodies produced were identified by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Specificities of the generated antibodies were evaluated by testing cross-reactivity between recombinant IgM and IgD. By ELISA, rabbit antibodies against the rfIgD fragment (anti-rfIgD) failed to recognize any kind of flounder serum Igs, whereas respective antibodies against rfCIg (anti-rfCIg) and rfIgM fragments (anti-rfIgM) reacted with serum Igs. Likewise, in immunoblot assays, though anti-rfIgD did not, both anti-rfCIg and anti-rfIgM bound with the ~85 kd flounder IgM heavy chain. By flow cytometry analysis, anti-rfCIg, anti-rfIgD and anti-rfIgM reacted with 6%, 3% and 6.5% of cells, respectively, suggesting that flounder IgD is not secreted in serum but expressed on flounder B-like cell surfaces as in mammals. Antibodies produced against recombinant flounder Igs could be used to develop sandwich assay systems for detecting flounder Igs and for further investigating the flounder immune system.  相似文献   

10.
11.
12.
Zhu XP  You F  Zhang PJ  Xu JH  Sun W 《Theriogenology》2007,68(6):873-881
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder.  相似文献   

13.
Streptococcus iniae is the major etiological agent of streptococcosis, which is responsible for hemorrhagic septicemia in fish, particularly olive flounder (Paralichthys olivaceus). In the present study, we sought to understand the pathogenicity and immunogenicity of S. iniae in order to develop a vaccine for streptococcosis. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting, was employed to investigate the pathogenicity and immunogenicity of two S. iniae isolates, Jeju-13 and Jeju-45, in olive flounder. The virulence of Jeju-13 was moderate whereas that of Jeju-45 was high. A vaccination trial with formalin-killed Jeju-45 demonstrated relatively low protection against the homologous isolate compared with the heterologous isolate. A significant difference in the secretion of extracellular products (ECPs) was noticed between the two S. iniae isolates. ECP antigens were highly immunogenic compared to those from whole cell lysates as determined by 2-DE immunoblot assay of Jeju-13 and Jeju-45 anti-sera collected from post-challenge survival fish. Furthermore, there were differences in the appearance of antigenic spots on 2-DE immunoblot profiles of ECPs of the respective sera. Interestingly, the mixture of killed-cells and concentrated ECPs from Jeju-45 led to significant protection against the homologous isolate of S. iniae in olive flounder. The present study demonstrates the usefulness of immunoproteomics in understanding the pathogenicity of S. iniae to aid the development of a vaccine for fish streptococcosis.  相似文献   

14.
In the course of identifying scuticociliates recently obtained from systemically infected olive flounder Paralichthys olivaceus in Korea, we found a scuticociliate species whose small subunit ribosomal RNA (SS rRNA) gene was not amplified by species-specific primers previously designed for Uronema marinum and Pseudocohnilembus persalinus. By studying morphological characteristics of wet-mounted and stained specimens, we identified the species as Philasterides dicentrarchi, which has been reported to cause systemic infection in the European sea bass Dicentrarchus labrax and turbot Scophthalmus maximus. In this study, we compared morphological characteristics of our specimens with previously reported Philasterides species, including P. dicentrarchi, and sequenced the SS rRNA gene in order to design P. dicentrarchi specific primers. This is the first report on scuticociliatosis caused by P. dicentrarchi from marine fish in Asia.  相似文献   

15.
16.
The innate immune system, particularly the external body surface, plays a frontier role in protecting fish under intensive aquaculture and at prolonged low temperatures from relevant infections due to inadequate adaptive immune responses. In the present study we aimed to understand the mucosal immunity of an economically important mariculture fish, olive flounder (Paralichthys olivaceus) by evaluating the immune components from its skin mucus. The activities of lysozyme (233.33+/-171.82 units mg(-1)), trypsin-like protease (42.84+/-1.249 units mg(-1)), alkaline phosphatase (0.376+/-0.005 units mg(-1)) and esterase (0.170+/-0.006 units mg(-1)) were detected in the skin mucus. Transferrin was identified by MALDI-TOF/MS analysis. ELISA and immunoblot assays using anti-flounder IgM monoclonal antibody showed the presence of a significant level (1.80+/-0.001, n=3) of monomer immunoglobulin M (IgM) with approximate molecular weight of 160 and 25 kDa under non-denaturing and denaturing states, respectively. Skin mucus showed strong antibacterial activity against tested fish pathogenic bacteria. In addition, skin mucus successfully agglutinated (HA titre 2(8)), but completely failed to haemolyse, rabbit erythrocytes. In conclusion, the major immune components of the skin mucus, identified in the present study, are possibly involved in the broad spectrum non-specific immunity of olive flounder.  相似文献   

17.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   

18.
PLCB1 (phospholipase C, beta 1) cDNA was cloned from olive flounder (Paralichthys olivaceus) cDNA via rapid amplification of cDNA ends (RACE). The cDNA for olive flounder PLCB1 (PoPLCB1) encodes for a polypeptide of 1,244 amino acids in length containing a well-conserved PH domain, catalytic X and Y domains, a C2 domain. From the sequence information of the BAC library, we assembled a contig containing the whole flounder PLCB1 cDNA sequences, and determined the exon/intron structure of the gene spanning > 110,743 bp DNA. PoPLCB1 gDNA sequences demonstrated the new sequence (exon 15), which has only been observed in the fish, is located between the X and Y domain of the PLCB1, and that PoPLCB1 exists as two splice variants-PoPLCB1a (1,244 amino acids) and PoPLCB1b (1,210 amino acids). Phylogenic analysis and sequence comparison of PoPLCB1 with other PLC isozymes showed a close relationship with the PLCB1 isozyme. Tissue-specific mRNA of PoPLCB1 was expressed predominantly in the brain and heart tissues. Between the two splicing variants of PoPLB1 in RT-PCR by tissue, PoPLCB1a showed a major expression pattern in more diverse types of tissues than the PoPLCB1b. PoPLCB1 gene expression was compared with that of the inflammatory cytokines IL-1β and TNF-α in infected spleen and kidney tissues via real-time RT-PCR assays following stimulation with LPS. After the stimulation, the expression of PoPLCB1 increased significantly prior to IL-1B and TNF-α expression. This provided direct evidence suggesting that PoPLCB1 may perform a crucial role in immune responses against pathogens and in inflammation.  相似文献   

19.
Surveys of marine birnavirus (MABV) were undertaken in cultured olive flounder Paralichthys olivaceus from the south and west coastal areas and Jeju in Korea during the period January 1999 to April 2007. MABV was detected in all seasons from the fry, juveniles and adult fish from the areas examined. Evident cytopathic effects of the virus including rounding and cell lysis were observed in chinook salmon embryo (CHSE-214) and rainbow trout gonad (RTG-2) cells, but not in fathead minnow (FHM) and epithelial papilloma of carp (EPC) cells. Nucleotide sequences of the VP2/NS junction region of the Korean isolates showed 97.8% ~ 100% similarity, and they belonged to the same genogroup. Cross neutralization tests with serotype-specific rabbit antisera against MABV strains exhibited a close antigenic relationships between strains, and were distinct from infectious pancreatic necrosis virus (IPNV) strains. Coinfection of MABV with bacteria (Streptococcus iniae, Vibrio spp.) and viruses (nervous necrosis virus, lymphocystis disease virus, viral hemorrhagic septicemia virus) was observed.  相似文献   

20.
The etiological agents of streptococcosis were isolated from diseased olive flounder collected on the Jeju island of Korea. A total of 151 bacterial isolates were collected between 2003 and 2006. The isolates were examined using various phenotypic and proteomic analyses, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, and glycoprotein assays. In addition, isolates were grown on blood agar to assess hemolytic activity, and biochemical assays were performed using the API20 Strep kit. Our results revealed that all isolates were nonmotile, Gram-positive cocci that displayed negative catalase and oxidase activities. Multiplex PCR assays revealed that 43% and 57% of the isolates were Streptococcus iniae and Streptococcus parauberis , respectively. These results were consistent with those of the SDS-PAGE and immunoblot analyses using whole-cell lysates of bacterial isolates. Significant differences were observed with respect to the Voges–Proskauer, pyrrodonyl arylamidase, alkaline phosphatase, and hemolytic activities of the S. iniae and S. parauberis isolates. Isolates of S. iniae displayed uniform profiles in the immunoblot and glycoprotein assays; however, immunoblot assays of S. parauberis isolates (using a chicken IgY antibody raised against a homologous isolate) revealed three distinct antigenic profiles. Our findings suggest that S. parauberis and S. iniae are endemic pathogens responsible for the development of streptococcosis in olive flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号