首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A wide number of pesticides, including highly persistent organochlorine compounds, such as lindane (γ-Hexachlorocyclohexane), have deteriorative effect on fauna and flora by inducing oxidative stress. Lindane induces cell damage by producing free radicals and reactive oxygen species. Quercetin, a dietary flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. In this study the flavonoid quercetin was used to investigate its antioxidative effect against lindane induced oxidative stress in rats. The level of lipid peroxidation, reduced glutathione (GSH) were analysed in addition to the antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione-s-transferase (GST) activities in the liver and kidney tissue. Levels of hepatic marker enzymes in serum like Aspartate transaminase (AST), Alanine transaminase (ALT), Alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH) and renal markers like serum creatinine and serum urea were estimated. Administration of Lindane induced histopathological alterations and increased levels of serum hepatic and renal markers and malondialdehyde (MDA) with a significant decrease in GSH content and CAT, SOD, GPx and GST activities. Cotreatment of quercetin along with lindane significantly decreased the lindane induced alteration in histology, serum hepatic and renal markers and MDA and also improved the cellular antioxidant status. The results show that Quercetin ameliorates Lindane induced oxidative stress in liver and kidney. The quercetin exhibited chemopreventive effect when administered along with lindane.  相似文献   

3.
Treatment of rats with daily dosis of 20 mg of lindane/kg for 3 consecutive days led to the accumulation of the insecticide in several tissues, including erythrocytes and liver. Lindane did not alter the hematocrit and hemoglobin concentration but reduced methemogiobin levels by 17%. Red blood cells from controls and lindane-treated rats, exposed to t-butyl hydroperoxide, exhibited comparable rates of oxygen uptake and visible chemiluminescence, whereas the induction period that precedes oxygen uptake was significantly enhanced in the latter group. Lindane treatment did not modify the activity of erythrocyte glutathione peroxidase, glucose-6-phosphate dehydrogenase, catalase, and methemoglobin reductase, being the total content of glutathione and superoxide dismutase activity significantly increased. The liver from lindane-treated rats showed an enhanced microsomal pro-oxidant activity, evidenced by higher cytochrome P450 content and NADPH-cytochrome c reductase and NADPH oxidase activities. The higher enzyme activities led to an increased superoxide anion generation (adrenochrome formation) and lipid peroxidation (measured either by the production of thiobarbituric acid reactants and spontaneous visible chemiluminescence). Concomitantly, liver glutathione content and the activity of glutathione peroxidase-glutathione reductase couple were augmented by lindane treatment, without any change in superoxide dismutase activity, together with a reduction in that of catalase. Results suggest that lindane does not alter the prooxidant/antioxidant status of the erythrocyte in conditions of a significant cellular accumulation of the insecticide, which might exert direct action on enzymatic systems leading to enhanced superoxide dismutase activity and glutathione content. In the liver, lindane-induced pro-oxidant condition was not accompanied by cell injury, probably due to the adaptative increase in some antioxidant mechanisms of the hepatocyte.  相似文献   

4.
The influence of the intracellular glutathione status on bile acid excretion was studied in the perfused rat liver. Perturbation of the thiol redox state by short term additions of diamide (100 microM) or hydrogen peroxide (250 microM) or t-butyl hydroperoxide (250 microM) led to a reversible inhibition of biliary taurocholate release without affecting hepatic uptake; inhibition amounted to 45% for diamide and 90% for the hydroperoxides. Concomitantly, the bile acid accumulated intracellularly. Bile flow increased from 1.3 to 2.0 microliters X min-1 X g liver-1 upon infusion of taurocholate (10 microM); the latter value was suppressed to 1.2 microliters X min-1 X g liver-1 by the addition of t-butyl hydroperoxide (250 microM). Similarly, the hepatic disposition of another bile constituent, bilirubin, was suppressed by 70% upon addition of hydrogen peroxide. While the addition of hydrogen peroxide inhibited also the endogenous release of bile acids almost completely, endogenous bile flow was much less affected, decreasing from 1.3 to 1.0 microliters X min-1 X g liver-1. Measurement of [14C]erythritol clearance showed bile/perfusate ratios of about unity both in the absence and presence of hydrogen peroxide, suggesting canalicular origin of the bile under both conditions. In livers from Se-deficient rats low in Se-GSH peroxidase (less than 5% of controls), hydrogen peroxide inhibited taurocholate transport substantially less, providing evidence for the involvement of glutathione in mediating the inhibition observed in normal livers. The percentage inhibition of taurocholate release and intracellular glutathione disulfide (GSSG) content were closely correlated. The addition of t-butyl hydroperoxide caused a several-fold increase of biliary GSSG release, whereas biliary GSH release was even decreased. The results establish a role of glutathione in canalicular taurocholate disposition.  相似文献   

5.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

6.
The chronic exposure to Aluminum (Al) may compromise different liver functions, mainly during the hepatic regeneration. The aim of this study is to investigate the interactions between the chronic i.p. exposure to Al and hepatic regeneration (HR) on bile flow and organic anion transport in experimental animals. For this purpose, we studied bile flow and fractional transfer rates for the transport of hepatic organic anions (hepatic uptake, sinusoidal efflux, and canalicular excretion), as well as parameters related with the oxidative stress (OS), on rats chronically treated with Al at 0 and 2 days of HR. The Al treatment and time of HR caused a decrease in the biliary flow and in the hepatic uptake and canalicular excretion constants. In addition, Al and HR increased the lipoperoxidation associated with a reduction of the glutathione content and glutathione peroxidase and catalase enzyme’s activities. Since the effects of Al and HR on biliary flow and transport systems were additive, but not on the oxidative status, different mechanisms might be involved on these alterations. Even though the OS may play a key role on the hepatic deleterious effects, there is no unique cause–effect relationship between OS and liver dysfunction in this experimental animal model.  相似文献   

7.
Thyroid hormone-induced calorigenesis contributes to liver oxidative stress and promotes an increased respiratory burst activity in Kupffer cells, which could conceivably increase the expression of redox-sensitive genes, including those coding for cytokines. Our aim was to test the hypothesis that L-3,3',5-triiodothyronine (T3)-induced liver oxidative stress would markedly increase the production of TNF-alpha by Kupffer cells and its release into the circulation. Sprague-Dawley rats receive a single dose of 0.1 mg T3/kg or vehicle (controls) and determinations of liver O2 consumption, serum TNF-alpha, rectal temperature, and serum T3 levels, were carried out at different times after treatment. Hepatic content of total reduced glutathione (GSH) and biliary glutathione disulfide (GSSG) efflux were measured as indices of oxidative stress. In some studies, prior to T3 injection animals were administered either (i) the Kupffer cell inactivator gadolinium chloride (GdCl3), (ii) the antioxidants alpha-tocopherol and N-acetyl-L-cysteine (NAC), or (iii) an antisense oligonucleotide against TNF-alpha (ASO TJU-2755). T3 elicited an 80-fold increase in the serum levels of TNF-alpha at 22h after treatment, which coincided with the onset of thyroid calorigenesis. Pretreatment with GdCl3, alpha-tocopherol, NAC, and ASO TJU-2755 virtually abolished this effect and markedly reduced T3-induced liver GSH depletion and the increases in biliary GSSG efflux. It is concluded that the hyperthyroid state in the rat increases the circulating levels of TNF-alpha by actions exerted at the Kupffer cell level and these are related to the oxidative stress status established in the liver by thyroid calorigenesis.  相似文献   

8.
Liver microsomal functions related to xenobiotic biotransformation and free radical production were studied in control rats and in animals subjected to L-3,3′,5-triiodothyronine (T3) and/or lindane administration as possible mechanisms contributing to oxidative stress, in relation to the activity of enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G-6PDH)) and content of lipid-soluble vitamins (α-tocopherol, β-carotene, and lycopene) affording antioxidant protection. Lindane treatment in euthyroid rats at a dosage of 20 mg/kg did not modify the content of liver microsomal cytochromes P450 and b5, the activity of NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase, and the production of superoxide radical (O·-2), as well as antioxidant systems, except for the reduction in lycopene levels. Hyperthyroidism elicited a calorigenic response and increased specific and molecular activities of NADPH-cytochrome P450 reductase, O·-2 generation, and G-6PDH activity, concomitantly with diminution in liver SOD and catalase activities and in α-tocopherol, β-carotene, and lycopene levels. The administration of lindane to hyperthyroid animals led to a further increase in the molecular activity of NADPH-cytochrome P450 reductase and in the O·-2 production/SOD activity ratio, and decrease of hepatic α-tocopherol content, in a magnitude exceeding the sum of effects elicited by the separate treatments, as previously reported for reduced glutathione depletion. Collectively, these data support the contention that the increased susceptibility of the liver to the toxic effects of acute lindane treatment in hyperthyroid state is conditioned by potentiation of the hepatic oxidative stress status.  相似文献   

9.
Hepatotoxic doses of acetaminophen in Fischer 344 rats did not increase biliary efflux of oxidized glutathione. Pretreatment of the animals with bis(2-chloroethyl)-N-nitrosourea inhibited hepatic glutathione reductase by 73 percent but did not potentiate the hepatotoxicity of acetaminophen and did not produce an increase in biliary efflux of oxidized glutathione in response to acetaminophen. Hepatic protein thiol content was not depleted by acetaminophen. A proposed role for oxidant stress mechanisms mediated either by reactive oxygen species or by the direct oxidant action of a reactive metabolite in acetaminophen-induced hepatotoxicity is unsubstantiated and unlikely.  相似文献   

10.
The development of an oxidative stress condition in the liver by lindane intoxication is discussed as a possible hepatotoxic mechanism of the insecticide. Lindane is metabolized by liver microsomal enzymes to a variety of metabolites, which are susceptible of conjugation for proper elimination. In addition, the interaction of lindane with the liver tissue results in the induction of the microsomal cytochrome P-450 system, together with enhanced rates of superoxide radical generation and a significant increase in indicators of lipid peroxidation. Concomitantly, lindane intoxication induces a derangement of some antioxidant mechanisms of the liver cell, including decreased superoxide dismutase and catalase activities and alterations in reduced glutathione content leading to depressed GSH/GSSG ratios. The time course study of the changes in hepatic lipid peroxidation and antioxidant parameters are closely interrelated and coincide with the onset and progression of morphological lesions.  相似文献   

11.
The effects of cyclosporine A (CyA) treatment on the hepatic content and biliary output of reduced (GSH) and oxidized (GSSG) glutathione and lipid peroxidation in the liver, and the ability of S-adenosylmethionine (SAMe) to antagonize the CyA-induced alterations were studied in male Wistar rats. To evaluate the efficacy of SAMe, three CyA and SAMe protocols were used: cotreatment with SAMe plus CyA, pretreatment with SAMe before starting cotreatment, and post-treatment with SAMe after beginning treatment with CyA alone. CyA treatment for one and four weeks depleted liver GSH, decreased the GSH/GSSG ratio and significantly reduced GSH and GSSG biliary concentrations and secretion rates. Additionally, long-term treatment enhanced lipid peroxidation. By contrast, when the rats were treated with CyA plus SAMe using any of the administration protocols, SAMe was seen to be efficient in antagonizing the GSH hepatic depletion, the changes in hepatic GSH/GSSG ratio and the increase induced by CyA in lipid peroxidation. Furthermore, SAMe also abolished the effects of CyA on the biliary secretion rates of GSH and GSSG. The efficacy of SAMe was similar, regardless of the administration protocols used. In conclusion, our results clearly demonstrate that SAMe is good for preventing, antagonizing and reversing the CyA-induced alterations in the hepatobiliary homeostasis of glutathione.  相似文献   

12.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24h) in hyperthyroid rats (daily doses of 0.1 mg L-3,3',5-triiodothyronine (T3)/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl3; 2 doses of 10mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical (O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.- generation/ SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3-treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

13.
Hepatic steatosis and the accompanying oxidative stress have been associated with a variety of liver diseases. It is not known if fat accumulation per se plays a direct role in the oxidative stress of the organ. This study tested if steatosis induced by a short-term carbohydrate-rich diet results in an increased hepatic sensitivity to oxidative stress. Antioxidant status was determined in a liver perfusion system and in isolated parenchymal, endothelial and Kupffer cells from rats kept on sucrose-rich diet or on regular diet for 48 h. t-Butyl hydroperoxide addition (2 mM) to the perfusion fluid resulted in a release of alanine aminotransferase (ALT) in livers from controls, whereas no ALT release was observed in fatty livers. After t-butyl hydroperoxide addition, oxidized glutathione release was 40% less in fatty than in control livers, whereas reduced glutathione (GSH) release was not different. Sinusoidal oxidant stress was mimicked by the addition of lipopolysaccharide (LPS) from Escherichia coli (10 microg/ml) followed by the addition of opsonized zymosan (8 mg/ml) to the perfusion medium. LPS plus zymosan treatments resulted in the release of ALT in control but not in fatty livers. At the end of perfusion, liver glutathione content was 3-fold elevated, and the tissue content of lipid peroxidation products was approx. 40% less in fatty livers compared to controls. GSH content was doubled and glucose-6-phosphate dehydrogenase (G6PD) expression was elevated by 3- and 10-fold in sinusoidal endothelial and parenchymal cells form fatty livers compared to cells from control animals. Following H(2)O(2) administration in vitro (0.2-1 mM), GSH remained elevated in endothelial and parenchymal cells from fatty livers compared to cells from controls. In contrast, G6PD activity and GSH content were similar in Kupffer cells isolated from fatty or control livers. The study shows that hepatic fat accumulation caused by a short-term sucrose diet is not accompanied by elevated hepatic lipid peroxidation, and an elevated hepatic antioxidant activity can be manifested in the presence of prominent steatosis. The diet-induced increase in G6PD expression and, thus, the efficient maintenance of reduced glutathione in endothelial and parenchymal cells are a supportive mechanism in the observed hepatic resistance against intracellular or sinusoidal oxidative stress.  相似文献   

14.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

15.
In the present study, we investigated the differential role of the mitochondrial glutathione status and induction of heat shock proteins (HSPs) 25/70 in protecting against carbon tetrachloride (CCl_4) hepatotoxicity in schisandrin B (Sch B)-pretreated mice. The time-course of Sch B-induced changes in these hepatic parameters were examined. Dimethyl diphenyl bicarboxylate (DDB), a non-hepatoprotective analog of Sch B, was studied for comparison. Sch B treatment (2 mmol/kg) produced maximal enhancement in hepatic mitochondrial glutathione status as well as increases in hepatic HSP 25/70 levels at 24 h post-dosing. The stimulatory effect of Sch B then gradually subsided, but the activities of hepatic mitochondrial glutathione reductase (GR) and glutathione S-transferases (GST) as well as the level of HSP 25 remained relatively high even at 72 h post-dosing. CCl_4 challenge caused significant impairment in mitochondrial glutathione status and a decrease in HSP 70 level, but the HSP 25 level was significantly elevated. While the extent of hepatoprotection afforded by Sch B pretreatment against CCl_4 was found to inversely correlate with the time elapsed after the dosing, the protective effect was associated with the ability of Sch B to maintain the mitochondrial glutathione status and/or induce further production of HSP 25 in CCl_4-intoxicated condition. On the other hand, DDB treatment (2 mmol/kg), which did not increase mitochondrial GSH level and GST activity or induce further production of HSP 25 after CCl_4 challenge, could not protect against CCl_4 toxicity. The results suggest that the enhancement of mitochondrial glutathione status and induction of HSP 25/70 may contribute independently to the hepatoprotection afforded by Sch B pretreatment.  相似文献   

16.
Parameters related to oxidative stress in rat liver and erythrocytes were studied after short-term administration (60 and 90 days) of 1000 ppm of lindane in the diet. Lindane induced an oxidative stress condition in the liver, which is related to an enhancement in microsomal NADPH-cyto-chrome c reductase and NADPH oxidase activities, superoxide radical formation and cytochrome P450 content, produced independently of the time of treatment. Also, decreased activities of glutathione peroxidase and catalase were concomitantly observed. Although these changes were paralleled by an increase in lipid peroxidation indices, such as production of thiobarbituric acid reactants and spontaneous chemiluminescence, no evidence of liver injury was obtained. Lindane treatment did not exert quantitatively important changes in the pro-oxidant/anti-oxidant status of the erythrocyte, with reduction in the red blood cell mass possibly reflecting actions of the insecticide on the eryth-ropoietic process.  相似文献   

17.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24 h) in hyperthyroid rats (daily doses of 0.1 mg l -3,3',5-triiodothyronine (T 3 )/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl 3 ; 2 doses of 10 mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical ( O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.-09 generation/SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3 -treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

18.
The production of reactive oxygen species (ROS) is considered to be a major factor in oxidative cell injury. The antioxidant activity or the inhibition of the generation of free radicals is important in providing protection against such hepatic damage. Silymarin, derived from the milk thistle plant, Silybium marianum, has been used in traditional medicine as a remedy for diseases of the liver and biliary tract. In the present study, the effect of hepatoprotective drug silymarin on body weight and biochemical parameters, particularly, antioxidant status of ethanol-exposed rats was studied and its efficacy was compared with the potent antioxidant, ascorbic acid as well as capacity of hepatic regeneration during abstention. Ethanol, at a dose of 1.6 g/kg body wt/day for 4 wks affected body weight in 16-18 week-old male albino rats (Wistar strain weighing 200-220 g). Thiobarbituric acid reactive substance (TBARS) level, superoxide dismutase (SOD), and glutathione-s-transferase (GST) activities were significantly increased, whereas GSH content, and catalase, glutathione reductase (GR) and GPx (glutathione peroxidase) activities significantly reduced, on ethanol exposure. These changes were reversed by silybin and ascorbic acid treatment. It was also observed that abstinence from ethanol might help in hepatic regeneration. Silybin showed a significant hepatoprotective activity, but activity was less than that of ascorbic acid. Furthermore, preventive measures were more effective than curative treatment.  相似文献   

19.
20.
Influences of biliary ligation and systemic depletion of glutathione (GSH) or modulation of GSH status on the disposition of a low, non-nephrotoxic i.v. dose of inorganic mercury were evaluated in rats in the present study. Renal and hepatic disposition, and the urinary and fecal excretion, of inorganic mercury were assessed 24 h after the injection of a 0.5-micromol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin (two 10-mg/kg i.p. doses in 2 ml/kg normal saline, 90 min apart, 60 min before mercuric chloride), buthionine sulfoximine (BSO; 2 mmol/kg i.v. in 4 ml/kg normal saline, 2 h before mercuric chloride) or diethylmaleate (DEM; 3.37 mmol/kg i.p. in 2 ml/kg corn oil, 2 h before mercuric chloride) that either underwent or did not undergo acute biliary ligation prior to the injection of mercury. Among the groups that did not undergo biliary ligation, the pretreatments used to alter GSH status systemically had varying effects on the disposition of inorganic mercury in the kidneys, liver, and blood. Biliary ligation caused the net renal accumulation of mercury to decrease under all pretreatment conditions. By contrast, biliary ligation caused significant increases in the hepatic burden of mercury in all pretreatment groups except in theacivicin-pretreated group. Blood levels of mercury also increased as a result of biliary ligation, regardless of the type of pretreatment used. The present findings indicate that biliary ligation combined with methods used to modulate GSH status systemically have additive effects with respect to causing reductions in the net renal accumulation of mercury. Additionally, the findings indicate that at least some fraction of the renal accumulation of inorganic mercury is linked mechanistically to the hepato-biliary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号