首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The microtubules in different parts of the neuron and synaptosomes were examined with respect to their stability, structure and orientation. On the basis of distribution, different labilities and differences in protofilament substructure seen by tannic acid staining, we have classified microtubules into eight major categories. Functional involvements in vesicle translocation, cytoskeletal support and the regulation of assembly/disassembly are considered.Dr. L.E. Westrum is an affiliate of the CDMRC at the University of Washington and a recipient of a Wellcome Research Travel Grant from the Burroughs-Wellcome Fund. The research was also supported in part by NIH Grants NS 09678, NS 04053 (NINCDS) and DE 04942 (NIDR), DHHS  相似文献   

2.
Motor endplates of the cutaneous pectoris skeletal muscle of the frog have been examined by electron microscopy using a new technique. This involves pretreatment with an albumin solution, followed by fixation with 4% unbuffered tetroxide. A small proportion of the endplate axonal ramifications show microtubules clothed in synaptic vesicles and focused on the presynaptic membrane, in particular on the active zones. The microtubules run in the presynaptic cytoplasm either parallel to or across the active zones. These two sets of microtubules cross each other at the active zones, which lie opposite the dips in the post-junctional folds. The possibility that the microtubules are involved in the translocation of synaptic vesicles to the active zone is discussed.  相似文献   

3.
In both longitudinal and cross sections of rectus abdominis muscle of Rana esculenta three types of muscle fibres are identified by means of light and electron microscopy. A comparison is made between these fibre types in homologous muscles of frog and mammals (rat and mouse). In longitudinal sections of mammalian and frog muscle the Z-line can be used for discrimination of the fibre types A, B and C because that line is of different thickness in each type. The proportions of the thickness in frog and mammalian muscles are relatively the same, but the absolute values are different. In cross sections there are no differences between frog and mammalian muscle fibres concerning the typical form of myofibrils in type A- and B-fibres, whereas in type C-fibres the arrangement of the filaments in the Z- and H-layer is different in the members of both animal classes. The amount of mitochondria and lipid droplets is different as well. In the species examined the distribution of A-, B- and C-fibres changes within the whole muscle. In frog, this pattern depends on the level in which the muscle has been sectioned. This is not true for mammalian muscle. On the other hand both ends of the rectus abdominis muscle in frog, rat and mouse show an accumulation of B- and C-type fibres.  相似文献   

4.
In previous communications [4, 38] we published that [3H]Met-enkephalin-Arg6-Phe7 (MERF) binds to opioid (kappa2 and delta) and sigma2 sites in frog and rat brain membrane preparations, however no binding to kappa1 sites could be established. In the present paper we compare the frog, rat and guinea pig brain membrane fractions with respect to their MERF binding data. No qualitative differences were found between the three species but specific binding of labelled MERF was maximal in frog brain and lowest in guinea pig brain, which corresponds to their kappa2 opioid receptor distribution. The naloxone resistant binding was also present in all investigated species and varied from 25% in frog and guinea pig cerebrum, to 50% in rat cerebrum and cerebellum, but no naloxone inhibition was found in guinea pig cerebellum where no kappa2 opioid receptors have been found. The presence of sigma2-like receptor was demonstrated in each investigated membrane fraction with displacement experiments using (-)N-allyl-normetazocine as competitor of tritiated MERF. It was shown that this site was responsible for 60-80% of [3H]MERF binding. The remaining part of the naloxone resistant labelled MERF binding could be displaced only with endogenous opioid peptides as met-enkephalin, dynorphin and beta-endorphin. The eventual physiological role of multiple MERF receptors is discussed.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS), originally found in the endothelium of vascular tissue, also exists in other cell types, including ciliated epithelia of airways. The eNOS is ultrastructurally localized to the basal body of the microtubules of the cilia, and nitric oxide (NO) stimulates ciliary beat frequency (CBF). We examined whether the expression of eNOS is present in ciliated cells of other organs. Western blotting analysis revealed that eNOS was expressed in the rat cerebrum, lung, trachea, testis, and oviduct. Immunohistochemical staining showed that eNOS was localized in the ciliated epithelia of airways, oviduct, testis, and ependymal cells of brain in addition to the endothelium and smooth muscle of the vasculature. To confirm the activation of eNOS in the ciliated epithelia, we examined the effect of L-arginine (L-Arg), the substrate of NOS, on the production of nitrite and nitrate (NOx) in the cultured explants of rat trachea. L-Arg (100 microM) increased NOx levels significantly (p<0.05). In explants exposed to inhibitors of NOS, the effect of l-Arg on the production of NOx was blocked. These findings suggest that epithelial NO plays an important role in signal transduction associated with ciliary functions.  相似文献   

6.
G Wiche  E Briones  H Hirt  R Krepler  U Artlieb    H Denk 《The EMBO journal》1983,2(11):1915-1920
To study the individual location of the microtubule proteins MAP-1 and MAP-2 in neuronal tissues and cells, antisera to electrophoretically purified MAP-1 and MAP-2 components were raised in rabbits. When frozen sections through rat brain were examined by immunofluorescence microscopy the antibodies to MAP-1 strongly stained a variety of nerve cells including dendrites and myelinated axons in the cerebrum and cerebellum. Antibodies to MAP-2 showed similar staining patterns, except that myelinated axons were unstained. These results were confirmed by immunoelectron microscopy of frozen sections through cerebellum using the peroxidase technique. Thereby, the association of MAP-1 with microtubules was also clearly demonstrated. When cultured mouse neuroblastoma N2A cells were examined by immunofluorescence microscopy the antiserum to MAP-1 brightly stained filamentous structures resembling microtubules, whereas relatively weak and diffuse staining of the cytoplasm was observed with the antiserum to MAP-2. In agreement with the immunolocalization, MAP-1, but not MAP-2, was found as a prominent component of microtubules proteins polymerized in vitro by taxol from soluble N2A cell extracts. Together these results indicate that neuronal microtubules are preferentially associated with distinct high mol. wt. polypeptides. Therefore, they support the concept that different complements of associated proteins determine distinct functions of microtubules.  相似文献   

7.
The volume occupied by the extracellular space has been investigated in six types of voluntary muscles: sartorius (frog), semitendinosus (frog), tibialis anticus longus (frog), iliofibularis (frog), rectus abdominis (frog), and diaphragm (rat). With the aid of four types of probe material, three of which are conventionally employed (inulin, sorbitol, sucrose) and one of which is newly introduced (poly-L-glutamate), and a different experimental method, we have demonstrated that the "true" extracellular space of frog sartorius, semitendinosus, tibialis anticus longus, and iliofibularis muscle and of rat diaphragm muscle is equal to, or probably less than, 8-9% (v/w) of the tissue. The frog rectus muscle shows a somewhat higher ceiling value of 14%.  相似文献   

8.
It has been shown on neuro-muscular preparations of frog sartorius muscle that chromium ions in the concentrations 1-4 x 10(-6) g/ml strengthen spontaneous and evoked transmitter release. Cr3+ ions in the concentrations above 4 x 10(-6) g/ml decrease the membrane potential of muscle fibres, decrease the quantum content of the end plate potentials. Experiments on a single Ranvier node have shown that Cr3+ ions decrease the amplitude, increase the rate and duration of the action potential of a nerve fibre. It is concluded that chromium ions produce a pronounced effect on synaptic transmission, which differs significantly from the action of manganese, cobalt and nickel ions.  相似文献   

9.
Summary Using a new albumin prefixation technique, microtubules have been observed in close association with the nuclear pores of neurons and glia. Thus, microtubules may be involved in such phenomena as anchoring, migration or rotation of the nucleus or in chemical messenger transport between nucleus and cytoplasm. Microtubules are also seen running close to the coated pits of dendrites. The implications are discussed.The authors gratefully acknowledge the support of grants from the British Medical Research Council (E.G.G.) and USPHS grants NS 09678 and NS 04053; National Institutes of Neurological and Communicative Disorders and Stroke (L.E.W.). We thank Hilary Samson for excellent technical collaboration, Julie Barron and Trevor King for technical assistance and Ann Harris for secretarial help  相似文献   

10.
The expression of cytotactin, an extracellular matrix glycoprotein involved in morphogenesis and regeneration, was determined in the normal and regenerating neuromuscular system of the frog Rana temporaria. Cytotactin was expressed in adult brain and gut as two major components of Mr 190,000 and 200,000 and a minor form of higher molecular weight, but was almost undetectable in skeletal muscle extract. However, cytotactin was concentrated at the neuromuscular junctions as well as at the nodes of Ranvier. After nerve transection, cytotactin staining increased in the distal stump along the endoneurial tubes. In preparations of basal lamina sheaths of frog cutaneous pectoris muscle obtained by inducing the degeneration of both nerve and muscle fibers, cytotactin was found in dense accumulations at original synaptic sites. In order to define the role of cytotactin in axonal regeneration and muscle reinnervation, the effect of anti-cytotactin antibodies on the reinnervation of the basal lamina sheaths preparations was examined in vivo. In control preparations, regenerating nerve terminals preferentially reinnervate the original synaptic sites. In the presence of anti-cytotactin antibodies, axon regeneration occurred with normal fasciculation and branching but with altered preterminal nerve fibers pathways. Ultrastructural observations showed that synaptic basal laminae reinnervation was greatly delayed or inhibited. These results suggest that cytotactin plays a primordial role in synaptogenesis, at least during nerve regeneration and reinnervation in the adult neuromuscular system.  相似文献   

11.
Post-mortem human neural tissues fixed in ethanol and aldehyde-based solutions express modulated frequency-dependent microvolt potentials when probed by chemical and electrical stimuli. These observations run contrary to the assumption that basic tissue functions are irreversibly impaired upon fixation, in the absence of nutrients and sufficient concentrations of physiological ions. The aim of the current study was to investigate the relative effects of pH and specific charged particles relevant to normal cell physiology upon electric potentials associated with fixed post-mortem rat brain tissue. We identified a positive relationship between the total time the brains had been immersed in ethanol–formalin–acetic acid and high-frequency microvolt potentials within the dorsal right hemisphere of the rat cerebrum. Measuring the pH of the fixative solution surrounding the brains indicated that as time increased, a logarithmic trend toward alkalinity could be observed. Further experiments revealed that high-frequency microvolt potentials were related to pH changes within the right hemisphere only. The right ventral cerebrum displayed a unique response to potassium chloride in ways uncounted for by pH alone. The results suggest that the fixed post-mortem right cerebrum of the rat is particularly sensitive to pH and physiological ions which explains a subset of previous findings with respect to stimulus–response patterns in human coronal brain sections. A concluding hypothesis is presented which suggests that brain tissue expresses material properties independent of metabolic activity though perhaps relevant to living brain function.  相似文献   

12.
Summary The anisotropic band of skeletal muscle is a complex structural assembly of the protein myosin and associated nonmyosin components. To study the relationships among these proteins, aggregates of thick myofilaments held together at the M line (A segments) have been prepared from fresh and glycerol extracted chicken pectoralis and rabbit psoas muscles and from fresh frog sartorius muscle. The structure of the A segments included several thick filaments, an M line, and a bare zone or pseudo-H zone, lateral to the M line. Most of the A segments exhibited a pattern of eleven periodic stripes in each half lateral to the bare zone. The A segments from fresh muscle displayed these stripes more consistently than did the A segments from glycerinated muscle. Some of the major stripes appeared to be double, and there were two subdivisions between the stripes nearest the bare zone. The more lateral of the major A band stripes, however, had one subdivision between them. The M line consisted of three prominent medial stripes and two fainter lateral stripes. In the M lines of rabbit A segments the lateral stripes were located well into the bare zone whereas the lateral stripes of M lines in chicken A segments were closer to the three medial M line stripes. Our results on the preparation and properties of A segments are compared with those of other investigators.This research was supported in part by General Research Support (RR-5576) from the United States Public Health Service to the College of Medicine and Dentistry of New Jersey, Rutgers Medical School. Paper I in this series is Irish and Wilson (1979a)  相似文献   

13.
Immuno-electron microscopic localization of sodium channels at nodes of Ranvier within adult optic nerve was demonstrated with polyclonal antibody 7493. The 7493 antisera, which is directed against purified sodium channels from rat brain, recognizes a 260 kDa protein in immunoblots of the crude glycoprotein fraction from adult rat optic nerve. Intense immunoreactivity with 7493 antisera was observed at nodes of Ranvier. Axon membrane at the node was densely stained, whereas paranodal and internodal axon membrane did not exhibit immunoreactivity. The axoplasm beneath the nodal membrane displayed variable immunostaining. Neither terminal paranodal oligodendroglial loops nor oligodendrocyte plasmalemma were immunoreactive with 7493 antisera. However, perinodal astrocyte processes exhibited intense immunoreactivity with the anti-sodium channel antisera. Optic nerves incubated with pre-immune sera, or with 7493 antisera that had been pre-adsorbed with purified sodium channel protein, displayed no immunoreactivity. These results demonstrate localization of sodium channels at high density at mammalian nodes of Ranvier and in some perinodal astrocyte processes. The latter observation offers support for an active role for perinodal astrocyte processes in the aggregation of sodium channels within the axon membrane at the node of Ranvier.  相似文献   

14.
Summary The sphincter muscle in the rat iris forms irregular strands in the stroma. Bundles of unmyelinated axons run among the muscle cells. After sympathetic denervation some axons degenerate. This should indicate that sympathetic and parasympathetic nerves are present in the same nerve net. The parasympathetic axons possess varicosities, that is, enlargements containing mitochondria and synaptic vesicles. These varicosities show a similar structural relationship to the muscle cells as do the varicosities of sympathetic nerves. No obvious ultrastructural difference is observed between the sympathetic and parasympathetic varicosities.This study has been supported by research grants (U267 and Y247) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

15.
Larvae of the South African clawed frog (Xenopus laevis) can regenerate the telencephalon, which consists of the olfactory bulb and the cerebrum, after it has been partially removed. Some authors have argued that the telencephalon, once removed, must be reconnected to the olfactory nerve in order to regenerate. However, considerable regeneration has been observed before reconnection. Therefore, we have conducted several experiments to learn whether or not reconnection is a prerequisite for regeneration. We found that the olfactory bulb did not regenerate without reconnection, while the cerebrum regenerated by itself. On the other hand, when the brain was reconnected by the olfactory nerve, both the cerebrum and the olfactory bulb regenerated. Morphological and histological investigation showed that the regenerated telencephalon was identical to the intact one in morphology, types and distributions of cells, and connections between neurons. Froglets with a regenerated telencephalon also recovered olfaction, the primary function of the frog telencephalon. These results suggest that the Xenopus larva requires reconnection of the regenerating brain to the olfactory nerve in order to regenerate the olfactory bulb, and thus the regenerated brain functions, in order to process olfactory information.  相似文献   

16.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

17.
The acetylcholine reversal potential (Er) of cultured rat myotubes is -3mV. When activated, the receptor is permeable to K+ and Na+, but not to Cl- ions. Measurement of Er in Tris+-substituted, Na-free medium also indicated a permeability to Tris+ ions. Unlike adult frog muscle the magnitude of Er was insensitive to change in external Ca++ (up to 30 mM) or to changes in external pH (between 6.4 and 8.9). The equivalent circuit equation describing the electrical circuit composed of two parallel ionic batteries (EK and ENa) and their respective conductances (gK and gNa), which has been generally useful in describing the Er of adult rat and frog muscle, could also be applied to rat myotubes when Er was measured over a wide range of external Na+ concentrations. The equivalent circuit equation could not be applied to myotubes bathed in media of different external K+ concentrations. In this case, the Er was more closely described by the Goldman constant field equation. Under certain circumstances, it is known that the receptor in adult rat and frog muscle can be induced to reversibly shift from behavior described by the equivalent circuit equation to that described by the Goldman equation. Attempts to similarly manipulate the responses of cultured rat myotubes were unsussessful. These trials included a reduction in temperature (15 degress C), partial alpha-bungarotoxin blodkade, and activation of responses with the cholinergic agonist, decamethonium.  相似文献   

18.
Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79–84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle.  相似文献   

19.
The effect of colchicine on myogenesis in vivo has been studied in the regenerating tadpole tail of the frog, Rana pipiens, and in the abdominal molting muscles of a blood-sucking bug, Rhodnius prolixus Stål. Colchicine is shown to disrupt microtubules in the differentiating muscle cells of both these organisms. The disruption of microtubules is correlated with a loss of longitudinal anisometry in the myoblasts and myotubes of the regeneration blastema in the tadpole tail. Before colchicine treatment, the myotubes contain longitudinally oriented myofibrils. After colchicine treatment, rounded, multinucleate myosacs containing randomly oriented myofibrils are present. It is suggested that the primary function of microtubules in myogenesis in the Rana pipiens tadpole is the maintenance of cell shape. The abdominal molting muscles of Rhodnius undergo repeated phases of differentiation and dedifferentiation of the sarcoplasm. However, the longitudinal anisometry of the muscle fibers is maintained in all phases by the attachments of the ends of the fibers to the exoskeleton, and microtubule disruption does not alter cell shape. The orientation of the developing myofibrils is also unaltered, indicating that the microtubules do not directly align or support the myofibrils in this system.  相似文献   

20.
Structural changes of the cytoskeleton of the frog urinary bladder granular cells were examined during low and high water permeability of the epithelium. A tight connection of the microfilaments and microtubules with vacuolar membranes and a great increase in the number of microtubules during a stimulated water flow was shown using different electron microscopic methods. Two populations of microtubules were discovered, respectively, with different diameter and different rate of stability. It is suggested that the thicker microtubules while interacting with actin microfilaments through associated electron dense globules may fulfil the transport function in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号