首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Argyrophilic nuclear proteins, known to be functionally associated with ribosomal genes, were localized, in four-, eight-, and 16-cell bovine embryo blastomere nuclei using two different silver-staining procedures. Within the eight-cell cleavage stage by the process of embryonal nucleologenesis in the cow embryo the full-capacity ribosome-producing machinery is established. In the four-cell embryo, many patches and islands of argyrophilic (Ag+) material were detected in the nucleoplasm. The nucleolus-precursor bodies (NPBs), composed uniformly of a homogeneous compact mass, were completely devoid of any silver staining. On the other hand, clear-cut localization of argyrophilic proteins was detected during the eight-cell stage either inside the transforming NPBs or in the close vicinity, or in the already differentiated nucleolus. In compact, nonvacuolated NPB, an intensive Ag+ area was detected, in the form of a lenticle, at the periphery of the NPB. During and following vacuolation of the NPB, no Ag+ was detected inside these vacuoles. It was seen, however, in the dense fibrillar nucleolar component surrounding the smaller vacuoles formed at the time of the establishment of nucleolar structure. Ag+ areas were seen repeatedly in the vicinity of NPBs, probably a part of the nucleolus-associated chromatin or, alternatively, representing the extranucleolar bodies. In blastomere nuclei of 16-cell embryos, already possessing reticulated nucleoli known from intensively synthesizing somatic cells, the silver-staining pattern corresponded to the usual situation in differentiated cells: slight staining of fibrillar centers, heavy labelling in the dense fibrillar component, and absence of silver deposits in the granular component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
When artificially activated mouse eggs are inseminated in the middle of the first cell cycle, sperm nuclei remain condensed until the first mitosis. During mitosis of the first cleavage division sperm nuclei decondense, subsequently recondense and are passively displaced to the daughter blastomeres. In the 2-cell embryos sperm nuclei form interphase nuclei which are able to replicate DNA and to condense into discrete chromosomes during the following mitotic division. These observations suggest that the mitotic cytoplasm of 1-cell embryos creates similar conditions for the transformation of sperm nuclei into male pronuclei as the cytoplasm of metaphase II oocytes.  相似文献   

4.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

5.
To elucidate a relationship between early cleavage planes and dorso-ventral (DV)-axis of sea urchin embryos, a fluorescent dye, Lucifer Yellow CH, was iontophoretically introduced into one blastomere at the 2-cell stage, and the location of the progeny cells was determined in the half-labeled prism larvae by examining the embryos from the animal pole. The boundary plane which divides the embryonic tissue into the labeled and nonlabeled parts was (1) coincident with, (2) perpendicular to, or (3) obliquely crossing the larval plane of bilateral symmetry. The oblique boundaries took only two angles mutually symmetrical with regard to the DV-axis of embryos. Combining these labeling patterns, the tissue of prism larvae could be divided into 8 sectors around the animal-vegetal axis. When the 2-cell stage embryos with different diameters of sister blastomeres were labeled with the dye, one end of the boundary plane was again found at one of the 8 boundary points noticed in equally cleaved embryos, while the other was observed to fall in the middle of a sector. These results indicate that the DV-axis of the embryo is established according to the spatial arrangement of blastomeres during the 5-6th cleavage stages when blastomeres align in 8 rows in meridional direction. It was also suggested that intercellular communication takes part in the determination of the fate of individual founder blastomeres during the two subsequent cleavages, i.e., 7-8th cleavage stages.  相似文献   

6.
One-cell parthenogenetic haploid embryos and blastomeres of the 2- and 4-cell diploid mouse embryos were observed in vitro for the occurrence of two cytoplasmic activities: the cortical activity and the chromatin condensation activity. For this purpose anucleated halves (AHs) and nucleated halves (NHs) were produced by bisection of one-cell embryos and of blastomeres. The cortical activity (manifested by surface deformations) was observed only during the first cleavage cycle. In AHs the surface activity began at the same time as in NHs and disappeared before the time of the cleavage division of nucleated halves. Anucleate fragments of blastomeres from 2- and 4-cell embryos did not exhibit any cortical activity. In the absence of the native nucleus the chromatin condensation activity (assayed by premature chromatin condensation of interphase thymocyte nuclei introduced into cytoplasts by cell fusion) could also have been detected only in the first cleavage cycle. In AHs this activity appeared at the time when NHs started to cleave and disappeared after the NHs finished the first cleavage division. AHs obtained from 2-cell and 4-cell stage blastomeres did not reveal condensation activity. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Asynchronous tetraploid mouse embryos were generated by electrofusion of fertilized eggs with blastomeres from different cleavage stages. The majority of the cytoplasm was always contributed by the egg. The best development was observed when eggs were fused with 2-cell blastomeres. Both genomes became active in fusion embryos (at least the genes for glucose phosphate isomerase did). Stage-specific protein synthesis seemed to be more adjusted to the developmental stage of the egg's than of the blastomere's genome, but at the 2-cell stage both contributed slightly differently to the protein patterns. Also, the time range of the first appearance of the stage-specific embryonic antigen SSEA-1 was wider in fusion embryos than in controls. It seems that the two genomes are not completely synchronized in these tetraploid embryos, a further indication that, in the mouse, the cytoplasm of fertilized eggs might not be compatible with older embryonic nuclei. Some results were presented at the 83. Jahresversammlung der Deutschen Zoologischen Gesellschaft in Frankfurt, 04.-09.06.1990 Correspondence to: U. Petzoldt  相似文献   

8.
9.
Control of first cleavage in single-cell reconstituted mouse embryos   总被引:3,自引:0,他引:3  
Karyoplasts derived from mouse embryos at the initial and final stages of the first or second mitotic interphase were fused to early and late enucleated 1-cell embryos. The time of cleavage of reconstituted and control embryos was recorded at 1-h or 8-h intervals after manipulation. This enabled assessment of nuclear and cytoplasmic control over the mitotic apparatus of the 1-cell embryo. Early nuclei from 1- or 2-cell embryos fused to late enucleated embryos delayed cleavage but for only a few hours. However, late nuclei fused to early enucleated embryos were unable to advance the cytoplasmic timing of the next cleavage division. Furthermore, these reconstituted embryos stayed in interphase longer than did controls and many embryos with nuclei derived from late 2-cell embryos failed to cleave. These findings suggest that, allowing for a short period, early nuclei can synchronize with late cytoplasm with no major damage to the cleavage apparatus. It is proposed that this period is required for the completion of DNA synthesis by the early nuclei. However, late nuclei cannot induce mitosis before the expected cytoplasmic time, and, with 2-cell karyoplasts, this interaction causes many embryos to 'block' in interphase, without cleaving, suggesting incompatible nucleo-cytoplasmic interactions between late 2-cell karyoplast and early 1-cell stage cytoplasm.  相似文献   

10.
11.
12.
Analysis of the fifth cell cycle of mouse development   总被引:2,自引:0,他引:2  
The 5th cell cycle of mouse development was analyzed to determine the lengths of each cell cycle phase. The DNA content of Feulgen-stained blastomere nuclei was measured at various times throughout the cell cycle by microdensitometry. To achieve precise timing of the start of the 5th cell cycle, experiments utilized isolated 16-cell blastomeres and cell pairs obtained by in-vitro division of isolated 8-cell blastomeres. The following estimates were made for a mixed population of polar and apolar 16-cell blastomeres: G1, less than or equal to 2 h; S, 8-9 h; G2 + M, 2 h. No significant difference was found in the timing of DNA synthesis between polar and apolar cells or between cell pairs and whole embryos.  相似文献   

13.
The objective of the study was to investigate interspecies somatic cell nuclear transfer (iSCNT) embryonic potential and mitochondrial DNA (mtDNA) segregation during preimplantation development. We generated bovine-ovine reconstructed embryos via iSCNT using bovine oocytes as recipient cytoplasm and ovine fetal fibroblast as donor cells. Chromosome composition, the total cell number of blastocyst and embryonic morphology were analyzed. In addition, mtDNA copy numbers both from donor cell and recipient cytoplasm were assessed by real-time PCR in individual blastocysts and blastomeres from 1- to 16-cell stage embryos. The results indicated the following: (1) cell nuclei of ovine fetal fibroblasts can dedifferentiate in enucleated bovine ooplasm, and the reconstructed embryos can develop to blastocysts. (2) 66% of iSCNT embryos had the same number of chromosome as that of donor cell, and the total cell number of iSCNT blastocysts was comparable to that of sheep parthenogenetic blastocysts. (3) RT-PCR analysis in individual blastomeres revealed that the ratio of donor cell mtDNA: recipient cytoplasm mtDNA remained constant (1%) from the one- to eight-cell stage. However, the ratio decreased from 0.6% at the 16-cell stage to 0.1% at the blastocyst stage. (4) Both donor cell- and recipient cytoplasm-derived mitochondria distributed unequally in blastomeres with progression of cell mitotic division. Considerable unequal mitochondrial segregation occurred between blastomeres from the same iSCNT embryos.  相似文献   

14.
The second cleavage of the mouse embryo is asynchronous. Some recent investigators have proposed that the sequence of division of blastomeres in two-cell embryos may predict the ultimate location of the descendants of these blastomeres within the blastocyst. To verify this model, we tracked the cells derived from two-cell stage blastomeres using tetramethylrhodamine-conjugated dextran as a lineage tracer. In the first variant of the experiment, we labeled one of two blastomeres in two-cell embryos and subsequently recorded which blastomere cleaved first. In the second variant of the experiment, fluorescent dextran was injected at the three-cell stage into the blastomere that had not yet cleaved. Subsequently, the fate of the progeny of labeled and unlabeled blastomeres was followed up to the blastocyst stage. Our results suggest that allocation of cells into the embryonic and abembryonic parts of the blastocyst is not determined by the order of cleavage of the first two blastomeres.  相似文献   

15.
This study focused on nucleolar changes in bovine embryos reconstructed from enucleated mature oocytes fused with blastomeres of morulae or with cultured, serum unstarved bovine fetal skin fibroblasts (embryonic vs. somatic cloning). The nucleotransferred (NT) embryos were collected and fixed at time intervals of 1-2 h (early 1-cell stage), 10-15 h (late 1-cell stage), 22-24 h (2-cell stage), 37-38 h (4-cell stage), 40-41 h (early 8-cell stage), 47-48 h (late 8-cell stage), and 55 h (16-cell stage) after fusion. Immunocytochemistry by light and electron microscopy was used for structure-function characterization of nucleolar components. Antibodies against RNA, protein B23, protein C23, and fibrillarin were applied. In addition, DNA was localized by the terminal deoxynucleotidyl transferase (TdT) technique, and the functional organization of chromatin was determined with the nick-translation immunogold approach. The results show that fully reticulated (active) nucleoli observed in donor cells immediately before fusion as well as in the early 1-cell stage after fusion were progressively transformed into nucleolar bodies displaying decreasing numbers of vacuoles from the 2- to 4-cell stage in both types of reconstructed embryos. At the late 8-cell stage, morphological signs of resuming nucleolar activity were detected. Numerous new small vacuoles appeared, and chromatin blocks reassociated with the nucleolar body. During this period, nick-translation technique revealed numerous active DNA sites in the periphery of chromatin blocks associated with the nucleolar body. Fully reticulated nucleoli were again observed as early as the 16-cell stage of embryonic cloned embryos. In comparison, the embryos obtained by fetal cloning displayed a lower tendency to develop, mainly during the first cell cycle and during the period of presumed reactivation. Correlatively, the changes in nucleolar morphology (desegregation and rebuilding) were at least delayed in many somatic NT embryos in comparison with the embryonic NT group. It is concluded that complete reprogramming of rRNA gene expression is part of the general nuclear reprogramming necessary for development after NT.  相似文献   

16.
DNA double-strand breaks are caused by both intracellular physiological processes and environmental stress. In this study, we used laser microbeam cut (abbreviated microcut or cut), which allows specific DNA damage in the pronucleus of a fertilized egg and in individual blastomere(s) of an early embryo, to investigate the response of early embryos to DNA double-strand breaks. Line type γH2AX foci were detected in the cut region, while Chk2 phosphorylation staining was observed in the whole nuclear region of the cut pronuclei or blastomeres. Zygotes with cut male or female pronucleus showed poor developmental capability: the percentage of cleavage embryos was significantly decreased, and the embryos failed to complete further development to blastocysts. The cut blastomeres in 2-cell, 4-cell, and 8-cell embryos ceased cleavage, and they failed to incorporate into compacted morulae, but instead underwent apoptosis and cell death at the blastocyst stage; the uncut part of embryos could develop to blastocysts, with a reduced percentage or decreased cell number. When both blastomeres of the 2-cell embryos were cut by laser microbeam, cell death occurred 24 h earlier, suggesting important functions of the uncut blastomere in delaying cell death of the cut blastomere. Taken together, we conclude that microbeam-induced DNA damage in early embryos causes compromised development, and that embryos may have their own mechanisms to exclude DNA-damaged blastomeres from participating in further development.  相似文献   

17.
18.
The allocation of cells to the trophectoderm and inner cell mass (ICM) in the mouse blastocyst has been examined by labelling early morulae (16-cell stage) with the short-term cell lineage marker yellow-green fluorescent latex (FL) microparticles. FL is endocytosed exclusively into the outside polar cell population and remains autonomous to the progeny of these blastomeres. Rhodamine-concanavalin A was used as a contemporary marker for outside cells in FL-labelled control (16-cell stage) and cultured (approximately 32- to 64-cell stage) embryos, immediately prior to the disaggregation and analysis of cell labelling patterns. By this technique, the ratio of outside to inside cell numbers in 16-cell embryos was shown to vary considerably between embryos (mean 10.8:5.2; range 9:7 to 14:2). In cultured embryos, the trophectoderm was derived almost exclusively (over 99% cells) from outside polar 16-cell blastomeres. The origin of the ICM varied between embryos; on average, most cells (75%) were descended from inside nonpolar blastomeres with the remainder derived from the outside polar lineage, presumably by differentiative cleavage. In blastocysts examined by serial sectioning, polar-derived ICM cells were localised mainly in association with trophectoderm and were absent from the ICM core. In nascent blastocysts with exactly 32 cells an inverse relationship was found between the proportion of the ICM descended from the polar lineage and the deduced size of the inside 16-cell population. From these results, it is concluded that interembryonic variation in the outside to inside cell number ratio in 16-cell morulae is compensated by the extent of polar 16-cell allocation to the ICM at the next division, thereby regulating the trophectoderm to ICM cell number ratio in early blastocysts.  相似文献   

19.
Mouse embryos at the 2-cell stage were cultured in the presence of cytochalasin B (CB), cytochalasin D (CD), colchicine (COL) or colcemid (COM) for up to 72 h. Cleavage was arrested in the 2-cell and 8-cell embryos cultured in CB or CD but the blastomeres continued to differentiate, since chromosome replication occurred in the blastomeres at approximately the same time as control embryos underwent cleavage; an increase in the incorporation of [3H]uridine into RNA was also detected. Furthermore, the cleavage-arrested embryos acquired the necessary information to undergo morphogenesis; these embryos when explanted to fresh medium after 48 h culture in CB or CD underwent compaction within 15–60 min and started to cavitate to produce trophoblastic vesicles within 5–6 h at the same time as when the control embryos were undergoing compaction and beginning to form blastocoelic cavities. In contrast, the embryos arrested in the presence of COM or COL showed none of these differentiative, biochemical or morphogenetic changes. Hence, differentiation of blastomeres and morphogenesis is apparently coupled with nuclear divisions and the information does not reside within the blastomeres at the 2-cell or 8-cell stage. The trophoblastic vesicles produced after cleavage arrest subsequently gave rise to only trophoblast giant cells and no embryonic derivatives were detected.  相似文献   

20.
Isolated blastomeres from 8- to 16-cell-stage embryos were fused by standard micromanipulatory means with either unfertilized eggs or fertilized or haploid parthenogenetically activated pronuclear-stage embryos. The hybrid eggs/embryos were incubated overnight in the presence of Colcemid until they had entered the first cleavage division. Air-dried chromosome preparations were then stained with silver nitrate in order to detect active nucleolar organizing regions (NOR). While control unfertilized eggs and 1-cell-stage fertilized and parthenogenetically activated embryos showed no evidence of silver-staining NOR-positive regions, the metaphase plates from 8- to 16-cell embryos showed characteristic NOR-positive regions, while their interphase nuclei also showed a characteristic reticular staining appearance. When hybrids between blastomere nuclei and unfertilized eggs were examined, none of the blastomere nuclei entered mitosis. However, when hybrids between blastomere nuclei and fertilized embryos were examined, in two thirds of the embryos, a single blastomere-derived diploid metaphase plate was present in association with two pronuclear-derived haploid metaphase plates. In most instances, the blastomere-derived chromosomes did not display silver-nitrate-staining NOR. Similar findings were observed when the blastomere-derived chromosomes in hybrids between blastomere nuclei and haploid parthenogenetic embryos were analysed. In the majority of cases, when blastomere nuclei remained in interphase, the characteristic silver-nitrate-staining fine reticular material either was not seen, or the nuclear contents were dispersed into clumps of chromatin-like material. Occasionally, the diploid chromosomes in the hybrids displayed morphological abnormalities. Our findings suggest that the cytoplasm of activated (but not nonactivated) 1-cell embryos is capable of influencing the nucleolar activity of the introduced 8- to 16-cell nuclei, effectively erasing from their chromosomes the memory of at least three previous rounds of rRNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号