首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different abandoned industrial areas contaminated by polycyclic aromatic hydrocarbons (PAHs) are present in Slovakia. These environmental burdens are very dangerous to the health of human and environment. The bioremediation, based on the use of hydrocarbons degrading microorganisms, is a promising strategy to sanitize these polluted sites. The aim of this investigation was to assess the bacterial diversity of a PAHs-contaminated soil and to select the potential hydrocarbonoclastic bacteria which can be used for different bioremediation approaches. The bacterial strains were isolated on minimal medium agar supplemented with a mixture of PAHs. Seventy-three isolated strains were grouped by ribosomal interspacer analysis in 15 different clusters and representatives of each cluster were identified by 16S rRNA sequencing. The PAHs degradation abilities of all bacterial isolates were estimated by the 2,6-dichlorophenol indophenol assay and by their growth on minimal broth amended with a mixture of PAHs. Different kinds of strains, members of the genus Pseudomonas, Enterobacter, Bacillus, Arthrobacter, Acinetobacter and Sphingomonas, were isolated from the contaminated soil. Four isolates (Pseudomonas putida, Arthrobacter oxydans, Sphingomonas sp. and S. paucimobilis) showed promising PAHs-degrading abilities and therefore their possible employing in bioremediation strategies.  相似文献   

2.
Accumulation of petroleum hydrocarbon residual considered a major environmental problem in the kingdom of Saudi Arabia cause of intensive efforts for oil detecting. Until now, In situ biodegradation considered the most effective method for petroleum hydrocarbon residual biodegradation. The aim of this study is isolation and identification biodegradable capability bacteria from contaminated sites in Khurais oil field, Dhahran, Saud Arabia via Different morphological and biochemical and molecular methods. Furthermore, degradation level in contaminated liquid medium and soil were evaluated. Three bacterial strains were selected from petroleum-contaminated soils of Khurais oil field depending on their capacity to grow in the existence of hydrocarbon components and identified according to morphological, biochemical. Interestingly, 16S rDNA sequencing fingerprinting results confirmed our bacterial identification as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereu. Phyllogenetic tree was constructed and genetic similarity was calculated according to alignments results. Biodegradation patterns for different three isolates were reflected varied degradation ability for three isolates regarding incubation time. Different features were studied for three biodegrading bacterial strains and identified as Bacillus subtilis, Pseudomonas aeruginosa and Bacillus cereus. Remarkable degradation rate % patterns for hydrocarbons residual were recorded for all three isolates with varied.  相似文献   

3.
The aim of this study was to isolate and characterize bacteria from the compost of fruit and vegetable waste (FVW) for plant growth-promoting (PGP) activities and investigate the pro-active influence of bacterial isolates on wheat growth. Fourteen bacterial strains (RHC-1 to RHC-14) were isolated and purified in tryptic soya agar (TSA). In addition to being biochemically characterized, these bacterial strains were also tested for their PGP traits, such as phosphate (P)-solubilization, nifH gene amplification, indole-3-acetic acid (IAA) quantification and the production of ammonia, oxidase and catalase. Based on 16S rRNA gene sequencing, these bacterial strains were identified as belonging to species of Bacillus, Lysinibacillus, Lysobacter, Staphylococcus, Enterobacter, Pseudomonas and Serratia. All bacterial strains solubilized tri-calcium phosphate and produced IAA. Two bacterial strains RHC-8 (Enterobacter sp.) and RHC-13 (Pseudomonas sp.) solubilized the maximum amount of tri-calcium phosphate, i.e. 486 and 464 μg/ml, respectively. P-solubilization was associated with a significant drop in the pH of the broth culture from an initial pH of 7 to pH 4.43. In addition to P-solubilization and IAA production, six bacterial strains also carried the nifH gene and were further evaluated for their effect on wheat (Triticum aestivum) growth under controlled conditions. All six bacterial strains enhanced wheat growth as compared to uninoculated control plants. Two of the bacterial strains, RHC-8 and RHC-13, identified as Enterobacter aerogenes and Pseudomonas brenneri, respectively, were assessed as potential PGP rhizobacteria due to exhibiting characteristics of four or more PGP traits and enhancing wheat growth though their specific mechanism of action.  相似文献   

4.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

5.
Piper nigrum is an interesting plant to study the endophytic microbial factors affecting plant growth because of its unique features. Endophytic bacterial isolation from the plant resulted in the isolation of twelve bacterial isolates which were screened for various plant growth promoting properties like phosphate solubilization, ACC deaminase production, siderophore production etc. Interestingly, seven isolates were found to have IAA biosynthetic potential. Bacterial isolates with multiple plant growth promoting properties were studied for their growth promoting effect on Vigna radiata seedlings. This resulted in the identification of Klebsiella sp. (PnB 10) and Enterobacter sp. (PnB 11) as the isolates with excellent growth promoting properties. The results confirm promising applications of the endophytic bacterial isolates obtained in the study and also their possible growth promoting effect in P. nigrum.  相似文献   

6.
Approximately 100 million tons of anhydrosugars, such as levoglucosan and cellobiosan, are produced through biomass burning every year. These sugars are also produced through fast pyrolysis, the controlled thermal depolymerization of biomass. While the microbial pathways associated with levoglucosan utilization have been characterized, there is little known about cellobiosan utilization. Here we describe the isolation and characterization of six cellobiosan-utilizing microbes from soil samples. Each of these organisms is capable of using both cellobiosan and levoglucosan as sole carbon source, though both minimal and rich media cellobiosan supported significantly higher biomass production than levoglucosan. Ribosomal sequencing was used to identify the closest reported match for these organisms: Sphingobacterium multivorum, Acinetobacter oleivorans JC3-1, Enterobacter sp SJZ-6, and Microbacterium sps FXJ8.207 and 203 and a fungal species Cryptococcus sp. The commercially-acquired Enterobacter cloacae DSM 16657 showed growth on levoglucosan and cellobiosan, supporting our isolate identification. Analysis of an existing database of 16S rRNA amplicons from Iowa soil samples confirmed the representation of our five bacterial isolates and four previously-reported levoglucosan-utilizing bacterial isolates in other soil samples and provided insight into their population distributions. Phylogenetic analysis of the 16S rRNA and 18S rRNA of strains previously reported to utilize levoglucosan and our newfound isolates showed that the organisms isolated in this study are distinct from previously described anhydrosugar-utilizing microbial species.  相似文献   

7.
In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.  相似文献   

8.
Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.  相似文献   

9.
Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.  相似文献   

10.
In this study, a total of 121 bacterial strains were isolated from the gastrointestinal tract of four teleostean species, namely striped snakehead (Channa striatus), striped dwarf catfish (Mystus vittatus), orangefin labeo (Labeo calbasu) and mrigal carp (Cirrhinus mrigala), among which 8 isolates showed promising antibacterial activity against four potential fish pathogens, Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas sobria and Pseudomonas fluorescens and were non-hemolytic. The isolates were further screened in response to fish bile tolerance and extracellular digestive enzyme activity. Two bacterial strains MVF1 and MVH7 showed highest tolerance and extracellular enzymes activities, and selected for further studies. Antagonistic activity of these two isolates was further confirmed by in vitro growth inhibition assay against four selected fish pathogens in liquid medium. Finally, these two bacterial strains MVF1 and MVH7 were selected as potential probiotic candidates and thus identification by partial 16S rRNA gene sequence analysis. The bacterial isolates MVF1 and MVH7 were identified as two strains of Bacillus sp.  相似文献   

11.
The biodiversity of wheat associated bacteria was deciphered from the peninsular zone of India. A total of 264 isolated bacteria were analyzed through amplified ribosomal DNA restriction analysis (ARDRA, using three restriction enzymes Alu I, Msp I and Hae III, which led to the clustering of these isolates into 12–16 groups for the different sites at >75% similarity index, adding up to 70 groups). 16S rRNA gene based phylogenetic analysis, revealed that all the bacteria belonged to three phyla Proteobacteria, Firmicutes, and Actinobacteria of 32 distinct species of 15 genera namely: Achromobacter, Alcaligenes, Arthrobacter, Bacillus, Delftia, Enterobacter, Exiguobacterium, Klebsiella, Methylobacterium, Micrococcus, Paenibacillus, Pseudomonas, Rhodobacter, Salmonella and Staphylococcus. Representative strains from each cluster were screened in vitro for plant growth promoting traits. Among plant growth promoting activities, siderophore producers were highest (15%), when compared to indole acetic acid producers (13%), Zn-solubilizers (11%), P-solubilizers (11%), ammonia (10%), hydrogen cyanide producers (9%), biocontrol (8%), N2-fixers (7%), 1-aminocyclopropane-1-carboxylate deaminase (6%), GA producers (6%) and K-solubilizers (5%). Among 32 representative strains, Alcaligenes faecalis, Arthrobacter sp., Bacillus siamensis, Bacillus subtilis, Delftia acidovorans, Methylobacterium mesophilicum, Methylobacterium sp., Pseudomonas poae, Pseudomonas putida, and Pseudomonas stutzeri exhibited more than six different plant growth promoting activities at high temperature. Thermotolerant bacterial isolates may have application as inoculants for plant growth promotion and biocontrol agents for crops growing at high temperature conditions.  相似文献   

12.
The Y-12 plant in Oak Ridge, TN, which manufactured nuclear weapons during World War II and the Cold War, contaminated East Fork Poplar Creek with heavy metals. The multimetal resistant bacterial strain, Stenotrophomonas maltophilia Oak Ridge strain O2 (S. maltophilia O2), was isolated from East Fork Poplar Creek. Sequence analysis of 16s rDNA suggested that our working strain of S. maltophilia O2 was a strain of Enterobacter. Phylogenetic tree analysis and biochemical tests confirmed that it belonged to an Enterobacter species. This new strain was named Enterobacter sp. YSU. Using a modified R3A growth medium, R3A-Tris, the Hg(II), Cd(II), Zn(II), Cu(II), Au(III), Cr(VI), Ag(I), As(III), and Se(IV) MICs for a confirmed strain of S. maltophilia O2 were 0.24, 0.33, 5, 5, 0.25, 7, 0.03, 14, and 40 mM, respectively, compared to 0.07, 0.24, 0.8, 3, 0.05, 0.4, 0.08, 14, and 40 mM, respectively, for Enterobacter sp. YSU. Although S. maltophilia O2 was generally more metal resistant than Enterobacter sp. YSU, in comparison to Escherichia coli strain HB101, Enterobacter sp. YSU was resistant to Hg(II), Cd(II), Zn(II), Au(III), Ag(I), As(III), and Se(IV). By studying metal resistances in these two strains, it may be possible to understand what makes one microorganism more metal resistant than another microorganism. This work also provided benchmark MICs that can be used to evaluate the metal resistance properties of other bacterial isolates from East Fork Poplar Creek and other metal contaminated sites.  相似文献   

13.
Bacterial wilt of potato caused by Ralstonia solanacearum is one of the most destructive diseases in Kurdistan province, Iran. The objective of the present study was to evaluate antagonistic effects of some rhizobacteria isolated from the rhizosphere of potato plants against R. solanacearum, the agent of potato bacterial wilt. A total of 52 rhizobacteria were isolated and screened for in vitro antagonistic activity against R. solanacearum. Seven isolates with inhibiting effects of the pathogen were identified by phenotypic properties and partial sequencing of 16s rRNA as Pseudomonas fluorescens Pf11, P. fluorescens Pf16, Pseudomonas putida Pp17, Paenibacillus sp. Pb28 and Enterobacter sp. En38, Pseudomonas fluorescens Pp23 and Serratia sp. Se40. Strains Pf11, Pf16, Pp17 and Pb28 significantly inhibited the growth of the pathogen. Strains En38, Pp23 and Se40 showed a moderate or weak inhibition. During greenhouse study, strains were evaluated for their effects in reducing of disease and increasing biomass of potato plants. In according to greenhouse experiment results, isolates Pb28, Pp17 and Pf11significantly reduced disease by 55.56%, 51.50% and 38.58%, respectively. In addition, plant biomass significantly increased in plants treated with Pb28, Pp17, Pf11 and Pf16, compared to the control. Therefore, this study shows that these four strains have potential to be used as biocontrol agents against R. solanacearum. To confirm their effectiveness as commercial biocontrol agent, it is necessary to evaluate their efficiency in the field conditions in the next studies.  相似文献   

14.
This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves, shoot length, root dry weight, and shoot dry weight. The activity of the bacterial isolate identified as B. subtilis NA-108 exerted the greatest influence on strawberry growth and showed a 42.8% increase in number of leaves, 15.26% for high shoot, 43.5% increase in root dry weight, and a 77% increase in shoot dry weight when compared with untreated controls.  相似文献   

15.
Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml?1, with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml?1, except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99 % similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.  相似文献   

16.
Soil bacterial population dynamics were examined in several crude-oil-contaminated soils to identify those organisms associated with alkane degradation and to assess patterns in microbial response across disparate soils. Seven soil types obtained from six geographically distinct areas of the United States (Arizona, Oregon, Indiana, Virginia, Oklahoma, and Montana) were used in controlled contamination experiments containing 2% (wt/wt) crude oil spiked with [1-14C]hexadecane. Microbial populations present during hydrocarbon degradation were analyzed using both 16S rRNA gene sequence analysis and by traditional methods for cultivating hydrocarbon-oxidizing bacteria. After a 50-day incubation, all seven soils showed comparable hydrocarbon depletion, where >80% of added crude oil was depleted and approximately 40 to 70% of added [14C]hexadecane was converted to 14CO2. However, the initial rates of hydrocarbon depletion differed up to 10-fold, and preferential utilization of shorter-chain-length n-alkanes relative to longer-chain-length n-alkanes was observed in some soils. Distinct microbial populations developed, concomitant with crude-oil depletion. Phylogenetically diverse bacterial populations were selected across different soils, many of which were identical to hydrocarbon-degrading isolates obtained from the same systems (e.g., Nocardioides albus, Collimonas sp., and Rhodococcus coprophilus). In several cases, soil type was shown to be an important determinant, defining specific microorganisms responding to hydrocarbon contamination. However, similar Rhodococcus erythropolis-like populations were observed in four of the seven soils and were the most common hydrocarbon-degrading organisms identified via cultivation.  相似文献   

17.
Using protocols designed for the isolation of Shigella from environmental freshwater samples from different regions of Bangladesh, 11 bacterial strains giving rise to Shigella-like colonies on selective agar plates and showing serological cross-reaction with Shigella-specific antisera were isolated. Phylogenetic analyses revealed that three of the isolates were most closely related to Escherichia coli, four to Enterobacter sp., two to Stenotrophomonas, and two isolates belonged to the Gram-positive genus Aerococcus. The isolates cross-reacted with six different serotypes of Shigella and were, in each case, highly type-specific. Two of the isolates belonging to the Enterobacter and Escherichia genera gave extremely strong cross-reactivity with Shigella dysenteriae and Shigella boydii antisera, respectively. The Aerococcus isolates gave relatively weak but significant cross-reactions with S. dysenteriae. Western blot analysis revealed that a number of antigens from the isolates cross-react with Shigella spp. The results indicate that important Shigella spp. surface antigens are shared by a number of environmental bacteria, which have implications for the use of serological methods in attempts for the detection and recovery of Shigella from aquatic environments.  相似文献   

18.
The aim of this work is the taxonomic characterization of three biosurfactant-producing bacterial isolates from the Churince system at Cuatro Ciénegas Basin (CCB) in the Mexican State of Coahuila, and the study of the possible role of biosurfactant production in their ecology and evolution. We determined that these isolates belong to a Pseudomonas koreensis lineage endemic to CCB, using standard taxonomical techniques, phylogenetic analysis of three chromosomal loci and phenotypic characterization. This new lineage has the distinct capacity to produce a biosurfactant when compared with previously reported P. koreensis isolates recovered from agricultural soils in Korea. We present evidence suggesting that the biosurfactant secreted by CCB P. koreensis strains is involved in their ability to compete with a CCB Exiguobacterium aurantiacum strain (m5-66) used as a model organism in competition experiments. Furthermore, the ethyl acetate extract of culture supernatant of CCB P. koreensis strains results in growth inhibition not only of E. aurantiacum m5-66, but also of a Bacillus subtilis type strain (ATCC6633). Based on these results we propose that the production of biosurfactant could be of ecological importance and could play a role in the separation of the P. koreensis CCB lineage.  相似文献   

19.
Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere.  相似文献   

20.
The diversity among a set of bacterial strains that have the capacity to degrade total petroleum hydrocarbons (TPH) in soil contaminated with oily sludge (hazardous hydrocarbon waste from oil refineries) was determined. TPH is composed of alkane, aromatics, nitrogen-, sulfur-, and oxygen-containing compound, and asphaltene fractions of crude oil. The 150 bacterial isolates which could degrade TPH were isolated from soil samples obtained from diverse geoclimatic regions of India. All the isolates were biochemically characterized and identified with a Biolog microbial identification system and by 16S rDNA sequencing. Pseudomonas citronellolis predominated among the 150 isolates obtained from six different geographically diverse samplings. Of the isolates, 29 strains of P. citronellolis were selected for evaluating their genetic diversity. This was performed by molecular typing with repetitive sequence (Rep)-based PCR with primer sets ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and PCR-based ribotyping. Strain-specific and unique genotypic fingerprints were distinguished by these molecular typing strategies. The 29 strains of P. citronellolis were separated into 12 distinguishable genotypic groups by Rep-PCR and into seven genomic patterns by PCR-based ribotyping. The genetic diversity of the strains was related to the different geoclimatic isolation sites, type of oily sludge, and age of contamination of the sites. These results indicate that a combination of Rep-PCR fingerprinting and PCR-based ribotyping can be used as a high-resolution genomic fingerprinting method for elucidating intraspecies diversity among strains of P. citronellolis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号