首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study is to investigate the antibacterial activity of Salvia officinalis L. aqueous extracts and its synergistic action with preservatives sodium nitrite, sodium benzoate and potassium sorbate in vitro against selected food spoiling bacteria. Synergy was assessed by the checkerboard assay method and quantitatively represented by the FIC index. Synergistic action was established for aqueous extract/ sodium benzoate, aqueous extract/ potassium sorbate, aqueous extract/ sodium nitrite combinations. Synergy was detected in relation to: Agrobacterium tumefaciens, Bacillus subtilis and Proteus sp. Synergy was established at plant extract and preservative concentrations corresponding up to 1/8 MIC values.  相似文献   

2.
Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanolic extract (PPE), (2) the in vitro antioxidant activity (AA) of PPE and of two different topical formulations (F1 and F2) containing PPE, (3) physico-chemical and functional stability, (4) in vitro release of PPE, and (5) in vivo capacity of formulations to prevent UV-B irradiation-induced skin damage. Results show that the polyphenol and flavonoid contents in PPE were 199.33 and 28.32 mg/g, respectively, and HPLC results show the presence of eugenol, tannic acid, and rutin. Evaluation of the in vitro AA of PPE demonstrated a dose-dependent effect and an IC50 of 4.75 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3.0 μg/mL in 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The ferric-reducing antioxidant power (FRAP assay) was 0.046 μmol/L trolox equivalent/μg/mL of extract. Among the AA, only the capacity to scavenge DPPH radical of PPE was maintained in F1 and F2. In addition, both formulations satisfactorily released the extract. The evaluation of the functional stability of F1 and F2 did not demonstrate loss of activity by storage at room temperature and at 4°C/6 months. In irradiated mice, treatment with F1 and F2 added with PPE significantly increased the capacity to scavenge ABTS radical and the FRAP of skin compared to vehicle-treated mice. In conclusion, the present results suggest that formulations containing PPE may be a topical source of antioxidant compounds to decrease oxidative damages of the skin.  相似文献   

3.
AIM: To evaluate the antibacterial susceptibilities of food-borne bacteria to individual and binary mixtures of a synthetic antimicrobial agent with a natural phenolic compound. METHODS AND RESULTS: Antibacterial susceptibilities of Escherichia coli, Listeria innocua, Salmonella Typhimurium and Staphylococcus aureus to individual and binary mixtures of potassium sorbate with a phenolic compound (thymol, carvacrol, or eugenol) were evaluated, at selected water activity (a(w); 0.99 or 0.97) and pH (5.5 or 4.5). The bacteria studied were susceptible to the action of the antimicrobials individually with minimal inhibitory concentrations that varied from 800-ppm potassium sorbate for Staph. aureus at a(w) 0.99, and pH 5.5 to 100-ppm thymol or carvacrol for the four studied bacteria at a(w) 0.97 and pH 4.5. Several binary mixtures of potassium sorbate with thymol, carvacrol or eugenol inhibited bacterial growth. Antimicrobial agent inhibitory concentrations in the mixture varied among bacteria, additionally depending on the a(w) and the pH tested. CONCLUSIONS: Synergistic binary mixtures with fractional inhibitory concentration index <0.6 include 100- or 200-ppm potassium sorbate with 50- or 100-ppm thymol, carvacrol or eugenol. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic combinations could be useful in reducing the amounts of antimicrobials needed to inhibit growth, thus diminishing consumer concerns regarding chemical preservatives.  相似文献   

4.
The objective of this study was to determine the effects of copper sulfate (CuSO4) on the chemical composition of basil (Ocimum basilicum L. ‘Green’) using static headspace extraction. The basil was cultivated in vitro and ex vitro. The sowing was completed in trays, and the seedlings were transplanted to pots and grown in a protected environment for 180 d. For in vitro cultivation, the seeds were placed on Murashige and Skoog (MS) medium enriched with growth regulators, sucrose, agar, and CuSO4 (at 0 μM [control], 25 μM, or 75 μM). Volatile organic compounds emitted from the excised leaves were collected by the static headspace technique, and identified by gas chromatography coupled to mass spectrometry (GC/MS). Twenty-six compounds were identified in the leaves harvested from the plants cultivated in vitro, while 11 compounds were identified in the leaves sampled from the ex vitro plants. Oxygenated monoterpenes were the main compounds found in plants cultivated ex vitro. Phenylpropanoids predominated in the control and the 25 μM CuSO4 treatments. The main compounds found were methyl eugenol (52.03%) and eugenol (20.66%). For the 75 μM CuSO4 treatment, the major compounds detected were linalool (28.14%) and 1.8-cineole (15.7%). Volatile secondary metabolites of basil cultivated in vitro with CuSO4 were easily isolated and rapidly obtained. The results of this study demonstrate the feasibility and potential of using copper treatments to reduce the impact of seasonality on essential oil production.  相似文献   

5.
Abstract

Postharvest diseases caused by Geotricum candidum (sour rot), Penicillium digitatum (green mould), and P. italicum (blue mould) are the most important negative factors affecting handling and marketing of citrus fruits in Egypt. The effect of organic acids (ascorbic, benzoic, citric and sorbic) as well as organic salts (potassium sorbate and sodium benzoate) were evaluated on the growth of causal agents and their disease incidence under in vitro and in vivo conditions. Complete inhibition was observed in the linear growth of all tested fungi when exposed to benzoic, citric and sorbic organic acids at concentrations of 4% and 2% of either sodium benzoate or potassium sorbate, respectively. Minimizing the tested concentration of organic acid down to 2%, the tested fungi fluctuated in their response such that only benzoic and sorbic acids could completely inhibit the growth of either P. digitatum or P. italicum only. Different organic acids and salts showed various levels of either protective or therapeutic effect for coated lemon fruits against mould infection whatever the time of their artificial inoculation under in vivo conditions. All treated fruits showed reduction in sour rot and green and blue mould diseases when compared with untreated fruits. Complete inhibition of mould incidence was obtained in coated lemon fruits with 4% of water or wax mixtures of sodium benzoate and potassium sorbate 24 hours before inoculation. Also, high reduction in mould incidence was observed in lemon fruits coated with the same concentration at 48 hours after inoculation under the same conditions. On the other hand, the tested organic acids showed a lesser effect on mould incidence. Moreover, they were more effective against mould incidence when dissolved in water than wax, that only 4% of water mixture of sorbic and benzoic acids showed 100% protection against mould incidence. Furthermore, the severity of infection records followed the same trend. The present findings demonstrate that potassium sorbate and sodium benzoate have potential as environmentally friendly products, nontoxic postharvest fungicides against sour rot, green and blue mould incidence of stored citrus fruits and could be suggested for commercial use in packing-houses in consideration to their wide consumption as safely food preservatives.  相似文献   

6.
Two new monoterpenes, named sibiscolacton B (1) and sibiscolacton C (2), together with a sorbate obtained from the natural product 1, 6-sorbitol-O-dicaffeic acid ester (3), were isolated from an aqueous extract of the aerial portion of Sibiraea angustata. The compounds’ structures were elucidated on the basis of extensive spectroscopic analysis, as well as literature comparisons. A preliminary in vitro bioassay showed that all of the compounds exhibited hypolipidemic effects in HepG2 cells.  相似文献   

7.
A novel killer protein (Pkkp) secreted by a Pichia kluyveri strain isolated from an Algerian soil was active against food and beverage spoilage yeasts of the genera Dekkera, Kluyveromyces, Pichia, Saccharomyces, Torulaspora, Wickerhamomyces and Zygosaccharomyces. After purification by gel filtration chromatography Pkkp revealed an apparent molecular mass of 54 kDa with SDS-PAGE. Minimum inhibitory concentrations (MICs) of purified Pkkp exhibited a high in vitro activity against Dekkera bruxellensis (MICs from 64,000- to 256,000-fold lower than that exhibited by potassium metabisulphite) and Saccharomyces cerevisiae (MICs from 32,000- to 64,000- fold lower than potassium sorbate). No in vitro synergistic interactions (calculated by FIC index ? Σ FIC) were observed when Pkkp was used in combination with potassium metabisulphite, potassium sorbate, or ethanol. Pkkp exhibited a dose–response effect against D. bruxellensis and S. cerevisiae in a low-alcoholic drink and fruit juice, respectively. The results of the present study suggest that Pkkp could be proposed as a novel food-grade compound useful for the control of food and beverage spoilage yeasts.  相似文献   

8.
In this study, the hurdle technology approach was used to prevent fungal growth of common spoilage fungi in naturally fermented black olives (Alternaria alternata, Aspergillus niger, Fusarium semitectum andPenicillium roqueforti). The factors studied included a combination of different concentrations of potassium sorbate (100 up to 1000 mg/L), a range of pH values (4.5, 5, 5.5, 6, and 6.5) and levels of NaCl (0, 3.5, 5, 7.5, and 10%).Alternaria alternata was the most sensitive fungus whereasP. roqueforti was the most resistant fungi against all hurdle factors. The combination of all hurdles completely inhibitedA. alternata andF. semitectum by lowest inhibitory factors, such as 100 mg/L potassium sorbate with 3.5% NaCl at pH 5. On the other hand, at pH 5, A.niger andP. roqueforti were totally prevented by a combination of 300 mg/L potassium sorbate with 10% NaCl and 400 mg/L potassium sorbate with 7.5% NaCl, respectively. Potassium sorbate and 5–10% NaCl interaction had significant stimulation effect onp. roqueforti andA. niger (p<0.05). This study indicates that potassium sorbate is a suitable preserving agent to inhibit growth of fungi in fermented products of pH near 4.5 regardless levels of NaCl. For products of slightly higher pH, the addition of potassium sorbate is suggested in combination with NaCl.  相似文献   

9.
Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.  相似文献   

10.
Two strains of Penicillium digitatum and one strain of Penicillium italicum were exposed to various levels of sorbic acid and potassium sorbate, and the MICs were determined. Selected strains of the molds were then repeatedly exposed to subinhibitory levels of the compounds to determine whether increased tolerance might develop. The MIC of sorbic acid (pH 4.75) to P. digitatum was between 0.02 and 0.025%. The MIC of sorbate (pH 5.5) to two strains of P. digitatum and P. italicum was found to be between 0.06 and 0.08%. Increasing levels of sorbate resulted in increasing growth suppression of the molds. Populations of P. digitatum were tested for increased tolerance to sorbic acid, and none was found. Individual molds that started from the same parent colony were examined for increased tolerance to potassium sorbate. Two P. digitatum strains developed no observable increased tolerance, but P. italicum developed a slight increase in tolerance to sorbate. When spores of P. italicum and P. digitatum were exposed to higher levels of sorbate for prolonged times, the fungicidal or fungistatic activity of the inhibitor was dependent upon pH, length of exposure time, level of sorbate, and the mold strain.  相似文献   

11.
The ethanol extract of Zanthoxylum piperitum (L.) DC. showed in vitro antiviral activity against influenza A virus. Three flavonol glycosides were isolated from the EtOAc fraction of Z. piperitum leaf by means of activity-guided chromatographic separation. Structures of isolated compounds were identified as quercetin 3-O-β-D-galactopyranoside (1), quercetin 3-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-rhamnopyranoside (3) by comparing their spectral data with literature values. The anti-influenza viral activity of isolates was evaluated using a plaque reduction assay against influenza A/NWS/33 (H1N1) virus. The compounds also were subjected to neuraminidase inhibition assay in influenza A/NWS/33 virus. Compounds 1–3 exhibited antiviral activity against an influenza A virus in vitro, and inhibited the neuraminidase activity at relatively high concentrations.  相似文献   

12.
Acetogenins, a class of natural compounds produced by some Annonaceae species, are potent inhibitors of mitochondrial electron transport systems. Although the cellular respiration processes are an important biochemical site for the acaricidal action of compounds, few studies have been performed to assess the bioactivity of acetogenin-based biopesticides on spider mites, mainly against species that occur in orchards. Using residual contact bioassays, this study aimed to evaluate the bioactivity of an ethanolic extract from Annona mucosa seeds (ESAM) (Annonaceae) against the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae), an important pest of the Brazilian citriculture. ESAM is a homemade biopesticide which was previously characterized by its high concentration of acetogenins. It caused both high mortality of P. citri females (LC50 = 7,295, 4,662, 3,463, and 2,608 mg l?1, after 48, 72, 96, and 120 h of exposure, respectively) and significant oviposition deterrence (EC50 = 3.194,80 mg l?1). However, there was no effect on P. citri female fertility (hatching rate). In addition, the ESAM efficacy (in terms of its LC90) was compared with commercial acaricides/insecticides (at its recommended rate) of both natural [Anosom® 1 EC (annonin), Derisom® 2 EC (karanjin), and Azamax® 1.2 EC (azadirachtin + 3-tigloylazadirachtol)] and synthetic origin [Envidor® 24 SC (spirodiclofen)]. Based on all of the analyzed variables, the ESAM exhibited levels of activity superior to other botanical commercial acaricides and similar to spirodiclofen. Thus, our results indicate that ESAM may constitute a biorational acaricide for citrus red mite integrated pest management in Brazilian citrus orchards, particularly for local use.  相似文献   

13.
Sutherlandia frutescens, one of the medicinal plants of southern Africa, has been widely used to boost the immune system by various ethnic groups. This study aims to provide initial scientific evidence for in vitro immune modulating activities of extracts of S. frutescens on cytokines, including interleukins 4, 6, 8, 10, 12p70 and TNF produced by the HL60 cell lines, as well as to identify possible compounds present therein. This will assist in guiding further studies to an active compound. The chemical profile of extracts, fractions and compounds was determined using high performance liquid chromatography coupled to mass spectrometry. Results from the initial in vitro experiments conducted indicated that extracts from S. frutescens possessed immune modulating as well as anti-inflammatory activities. This in vitro study showed that an ethanolic extract appeared to recruit the various inflammatory cytokines to the site of infection upon stimulation with phorbol 12-myristate 13-acetate, where essentially the non-polar compounds present in the ethanol extract contributed to most of the activity observed for this extract.  相似文献   

14.
The development of microbial populations on fillets of Mediterranean gilt-head sea bream ( Sparus aurata ) treated with potassium sorbate, sodium gluconate or a combination of both and stored under a modified atmosphere (MA) of 40% CO2, 30% O2 and 30% N2 at 0±1 °C for about 30 d was studied. The pH of aqueous solutions of the preservatives was adjusted to 6·0 with HCl. The preservatives were applied by dipping. The use of sorbate plus gluconate was more effective than sorbate alone. Gluconate had a positive effect on the growth of Gram-positive micro-organisms. Changes in the concentrations of glucose, glucose-6-phosphate, ammonia, acetic acid, trimethylamine-nitrogen and sorbate were also monitored.  相似文献   

15.
Mosquitoes play a key role in the transmission of some important diseases. The need for controlling these insects is critical to reduce their risks to human and domesticated animals. Recently the trend to explore effective chemical compounds from local plants has begun as a safe means of control. The present study aimed to evaluate the anti-larval activity of Chrysanthemum extract and the prepared silver nanoparticle (AgNPs) against the Aedes aegypti mosquito, the dengue vector in Saudi Arabia. A series of different concentrations of ethanol extract and extract prepared AgNPs against the fourth-life larvae was tested. The effective concentrations of crude extract and AgNPs ranged from 50 to 250 and 10 to 30 ppm respectively, and the death percentages corresponding to these concentrations ranged from 18 to 92 and 36 to 96% respectively. According to the LC50 values of treated larvae, AgNPs (12.754 ppm) is more effective against A. aegypti mosquito larvae than the crude extract (228.345 ppm) at about 17.9 times. The mixing of the plant extract with the silver nitrate has led to potentiation. This is due to the synergy that occurs between the extract and the silver particles during the reduction process. The compounds in the extract are related to the surface of the particles, increasing the strength of their effects. It is recommend to separate the active elements in the Chrysanthemum plant and its preparation in the form of nanoparticles as a promising compound in mosquito control programs with least damage to human kind and the environment.  相似文献   

16.
The potential acaricidal properties of an Ailanthus altissima bark extract were assessed against two common species of animal ectoparasitic mites, Psoroptes cuniculi and Sarcoptes scabiei var. cuniculi, in vitro. A. altissima bark extract was obtained by ethanol thermal circumfluence and tested at four concentrations (1.0, 0.5, 0.25 and 0.125 g/ml) on mites collected from rabbits. Compared to the fenvalerate treatment group, the A. altissima bark exhibited significant acaricidal properties for both mite species treated. The extract of concentrations of 1.0, 0.5 and 0.25 g/ml killed all tested S. scabiei within 7 h, however, only 1.0 and 0.5 g/ml of extract killed all treated P. cuniculi. The median lethal time (LT50) values at 1, 0.5 and 0.25 g/ml were 0.60, 0.78, 1.48 h for S. scabiei and 0.74, 1.29, 3.33 h for P. cuniculi. The median lethal concentration (LC50) for P. cuniculi was approximately 1.6 times that for S. scabiei var. cuniculi at 4 h. The extract showed stronger toxicity against S. scabiei than against P. cuniculi. Mortality rates increased with increasing concentration of extract administered and with increasing time post-treatment, indicating that the acaricidal activity of A. altissima bark extract is both time-dependent and dose-dependent. This is the first report on acaricidal activity of A. altissima against P. cuniculi and S. scabiei var. cuniculi. It indicates that A. altissima contain potential acaricidal compounds. Our study is the first step to develop potentially novel compounds from A. altissima for the effective control of mites in livestock.  相似文献   

17.
Potassium sorbate, sodium benzoate, sulfur dioxide, and diethylpyrocarbonate (DEPC) were tested for their effectiveness in preventing the outgrowth ofByssochlamys nivea Westling ascospores. Sulfur dioxide was the most inhibitory of the test antimycotics, complete inhibition of colony formation occurring in acidified (pH 3.5) potato dextrose agar containing 50 ppm of the preservative. Complete inhibition ofB. nivea ascospore outgrowth in grape juice stored for 60 days was noted in the presence of 300 ppm sulfur dioxide, 400 ppm potassium sorbate, and 600 ppm DEPC. Growth was observed in grape juice containing 1000 ppm sodium benzoate. The presence of up to 100 ppm potassium sorbate in grape juice during heat activation appears to have a stimulatory effect on breaking dormancy, while the other test preservatives at this concentration decrease the heat resistance ofB. nivea ascospores. The time elapsed between heat shock and exposure to DEPC or sodium benzoate is critical with respect to the sensitivity of ascospores to these preservatives.  相似文献   

18.
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g?1, 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.  相似文献   

19.
To improve the application of essential oils as natural antimicrobial preservatives, the objective of the present study was to determine physical, antimicrobial, and biophysical properties of eugenol after nanoencapsulation by sodium caseinate (NaCas). Emulsions were prepared by mixing eugenol in 20.0 mg/mL NaCas solution at an overall eugenol content of 5.0–137.9 mg/mL using shear homogenization. Stable emulsions were observed up to 38.5 mg/mL eugenol, which had droplet diameters of smaller than 125 nm at pH 5–9 after ambient storage for up to 30 days. The encapsulated eugenol had similar minimal inhibitory and minimal bactericidal concentrations as free eugenol against Escherichia coli O157:H7 ATCC 43895, Listeria monocytogenes Scott A, and Salmonella Enteritidis but showed better inhibition of E. coli O157:H7 than free eugenol during incubation at 37 °C for 48 h. After 20 min interaction at 21 °C, bacteria treated with encapsulated eugenol had a greater reduction of intracellular ATP and a greater increase of extracellular ATP than free eugenol, suggesting the enhanced permeation of eugenol after nanoencapsulation. However, such overall trend was not observed when examining bacterial morphology and uptake of crystal violet, suggesting the possible membrane adaptation. Findings from this study showed the feasibility of preparing nanoemulsions with high loading of eugenol using NaCas.  相似文献   

20.

Background

Inhibition and eradication of Staphylococcus aureus biofilms with conventional antibiotic is difficult, and the treatment is further complicated by the rise of antibiotic resistance among staphylococci. Consequently, there is a need for novel antimicrobials that can treat biofilm-related infections and decrease antibiotics burden. Natural compounds such as eugenol with anti-microbial properties are attractive agents that could reduce the use of conventional antibiotics. In this study we evaluated the effect of eugenol on MRSA and MSSA biofilms in vitro and bacterial colonization in vivo.

Methods and Results

Effect of eugenol on in vitro biofilm and in vivo colonization were studied using microtiter plate assay and otitis media-rat model respectively. The architecture of in vitro biofilms and in vivo colonization of bacteria was viewed with SEM. Real-time RT-PCR was used to study gene expression. Check board method was used to study the synergistic effects of eugenol and carvacrol on established biofilms. Eugenol significantly inhibited biofilms growth of MRSA and MSSA in vitro in a concentration-dependent manner. Eugenol at MIC or 2×MIC effectively eradicated the pre-established biofilms of MRSA and MSSA clinical strains. In vivo, sub-MIC of eugenol significantly decreased 88% S. aureus colonization in rat middle ear. Eugenol was observed to damage the cell-membrane and cause a leakage of the cell contents. At sub-inhibitory concentration, it decreases the expression of biofilm-and enterotoxin-related genes. Eugenol showed a synergistic effect with carvacrol on the eradication of pre-established biofilms.

Conclusion/Major Finding

This study demonstrated that eugenol exhibits notable activity against MRSA and MSSA clinical strains biofilms. Eugenol inhibited biofilm formation, disrupted the cell-to-cell connections, detached the existing biofilms, and killed the bacteria in biofilms of both MRSA and MSSA with equal effectiveness. Therefore, eugenol may be used to control or eradicate S. aureus biofilm-related infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号