首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Lake Eyre Basin, the Australian hyriid genus Velesunio is represented by three undescribed species, each of which are highly divergent genetically, but morphologically similar to Velesunio wilsonii (Lea 1859). A fourth species, Velesunio ambiguus (Philippi 1847), occurs not only in the Lake Eyre Basin but throughout much of eastern Australia, including the Murray-Darling Basin. In this study, we show that another hyriid, Alathyria jacksoni (Iredale 1934), which is sympatric with V. ambiguus, is genetically deeply nested within the Velesunio species complex, such that the genus Velesunio is paraphyletic with respect to A. jacksoni. Moreover, our mitochondrial phylogenetic reconstructions indicate that A. jacksoni is closely allied to one of the cryptic Velesunio species occurring in the Lake Eyre Basin, but distinct from V. ambiguus and the two other Velesunio species. These data suggest that the genera Alathyria and Velesunio are in need of revision. The shells of A. jacksoni and Velesunio spp. vary with local conditions and sometimes are difficult to distinguish. Our analyses also show that shell characters of these taxa do not closely match the phylogenetic data, and it appears that the traditional taxonomic emphasis on these plastic characters has obscured evolutionary relationships between these, and possibly other, Hyriidae.  相似文献   

2.
The phylogeny and potential mode of speciation of the river limpet Ancylus fluviatilis (Basommatophora) was examined using mitochondrial DNA sequences from 16S ribosomal RNA, cytochrome c oxidase subunit I (COI) and nuclear DNA from internal transcribed spacer (ITS-1) regions from 103 populations across Europe. Four highly divergent lineages were observed within Ancylus. Clade 1, representing the nominal taxon Ancylus fluviatilis (O.F. Müller, 1774), is mainly found in central and northern Europe, Clade 2 is present in a single Portuguese population, Clade 3 is distributed on the Canary islands, North Africa and the eastern Mediterranean region, whereas Clade 4 inhabits the Northern Mediterranean coasts. Phylogenetic analyses revealed an overall consistent topology of nuclear and mitochondrial gene trees. Based on a molecular clock, we estimated that the basic radiation occurred in the late Pliocene. Although clades differ significantly in size independent shell shape, morphological differentiation of lineages is not feasible without genetic data. Environmental data related to climate (precipitation, temperature, etc.) showed a significant differentiation of clades. Clade 1 dwells in relatively colder and more stable habitats than Clades 3 and 4, whose habitats in turn differ in a low or high amount of precipitation during spring and autumn, respectively. Based on the combined data sets on mitochondrial DNA, nuclear DNA, morphological and ecological differentiation, we conclude that Ancylus represents a cryptic species complex of reproductively and genetically isolated lineages. In addition, the joint analysis suggests that ecological speciation is probable to explain current patterns.  相似文献   

3.
We examined genetic structure and levels of connectivity among subpopulations within each of four cryptic species belonging to the freshwater mussel genus Velesunio. We used allozymes and a fragment of the mitochondrial cytochrome c oxidase I gene to examine genetic variation in populations from isolated waterholes, belonging to four major inland drainages in eastern Australia. Based on evidence from other invertebrates in the region we predicted that, in each species, we would find evidence of historical connectivity among populations from different drainages. This was clearly not the case, as for the two species that occurred in more than one drainage there was evidence of both current and past restriction to gene flow. Moreover, given the potential for extensive dispersal of these mussels through the river systems during flood times via their fish hosts, we predicted low levels of genetic variation among populations from waterholes in the same drainage. Contrary to our expectations, all four species showed some evidence of restricted gene flow among waterholes within drainages. This suggests that either (a) mussel larvae are not produced during flood times, when their fish hosts would be free to move between waterholes, or (b) mussel larvae are attached to their hosts at these times, but the fish movement is limited between waterholes.  相似文献   

4.
The tribe Bovini comprises cattle and cattle-like species. Reconstructions of their phylogeny have so far been incomplete and have yielded conflicting conclusions about the relationship of American bison and wisent (European bison). We have compared the sequences of three mitochondrial and two Y-chromosomal DNA segments. Mitochondrial DNA indicates that four distinct maternal lineages diverged after an early split-off of the buffalo species, leading to (1) taurine cattle and zebu, (2) wisent, (3) American bison and yak, and (4) banteng, gaur, and gayal, respectively. At a higher level, lineages (1) and (2) and lineages (3) and (4) are probably associated. In contrast, Y-chromosomal sequences indicate a close association of American and European bison, which is in agreement with their morphological similarity, complete fertility of hybrid offspring, and amplified fragment length polymorphism (AFLP) fingerprints of nuclear DNA. One explanation for the anomalous divergence of the mitochondrial DNA from the two bison species is lineage sorting, which implies that two distinct mitochondrial lineages coexisted in the bison-yak branch until the recent divergence of American bison and wisent. Alternatively, the wisent may have emerged by species hybridization initiated by introgression of bison bulls in another ancestral species. This "transpatric" mode of species formation would be consistent with the recent appearance of the wisent in the fossil record without clearly identifiable ancestors.  相似文献   

5.
Inferences about species boundaries and evolutionary history are often complicated by discordance between datasets. In recent times, considerable effort has been devoted to understanding the causes of discordance between the patterns of genetic variation and structure shown by different unlinked molecular markers. The genus Batrachoseps (Caudata, Plethodontidae), the most diverse group of salamanders in western North America, is characterized by limited morphological variation and discordance between molecular datasets, making it a challenging group for taxonomists but also a good model to test newly developed analytical methods to sort out possible sources of discordance. In this study, we present a comprehensive assessment of the evolutionary history of B. major, one of the most widespread species in the genus, based on extensive sampling and phylogenetic and coalescent analyses of data from mitochondrial and nuclear markers. We found non-monophyly of mtDNA in B. major, with two lineages (northern and southern) that are more closely related to other species in the genus than to each other, but this division was not apparent in nuclear DNA. Despite non-monophyly in gene trees, species tree analyses recovered a sister group relationship between the two lineages of B. major, and coalescent simulations suggested that there is no need to invoke gene flow to account for the discordance across gene trees. The possibility that these two lineages represent sister, cryptic taxa, is discussed in the context of Bayesian methods of species/lineage delineation. Contrary to prior expectations, B. major has experienced extensive diversification on the Baja California Peninsula, where four endemic lineages have persisted for at least 4 million years.  相似文献   

6.
Accurate species delimitation of sampled biological material is critical for a range of studies. Although the DNA barcodes developed in recent years are useful for identifying numerous well differentiated species that have not experienced frequent gene flow, they fail to delimit recently diverged species, especially those with extensive introgressions. Here we use five Rhododendron species growing together on the same mountain as a model system to compare the species delimitation effectiveness of the DNA barcodes (internal transcribed spacer, matK, psbA‐trnH, and rbcL) previously proposed versus 15 pairs of microsatellite markers. Using these markers, we genotyped 129 individuals, which were members of five species according to morphological identification. We identified five simple sequence repeat genetic clusters (independently evolving lineages) corresponding to the morphological identification. However, we found that numerous individuals contained cryptic hybrid introgressions from the other species. The four DNA barcodes could not delimit three out of four closely related species that showed clear morphological differentiation and cryptic introgressions. Even after excluding all cryptic hybrids, two closely related species could not be successfully identified. The low discrimination ability of the DNA barcodes for closely related Rhododendron species could result from two, not mutually exclusive factors: introgressive hybridization and incomplete lineage sorting. Our results highlight the importance of simple sequence repeat markers in delimiting closely related species and identifying cryptic introgressions in the absence of morphological changes.  相似文献   

7.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

8.
Bark beetles in the genus Dendroctonus may attack and kill several species of coniferous trees, some of them causing major economic losses in temperate forests throughout North and Central America. For this reason, they have been widely studied. However, various aspects of the taxonomy and evolutionary history of the group remain contentious. The genus has been subdivided in species groups according to morphological, biological, karyological or molecular attributes, but the evolutionary affinities among species and species groups within the genus remain uncertain. In this study, phylogenetic relationships among Dendroctonus species were reassessed through parsimony‐based cladistic analysis of morphological and DNA sequence data. Phylogenetic inference was based on 36 morphological characters and on mitochondrial DNA sequences of the cytochrome oxidase I (COI) gene. Analyses were carried out for each dataset, as well as for the combined data analysed simultaneously, under equal and implied weights. According to the combined analysis, the genus Dendroctonus is a monophyletic group defined by at least three synapomorphic characters and there are four main lineages of varied composition and diversity within the genus. Within these lineages, several monophyletic groups match, to some extent, species groups defined by previous authors, but certain groups proposed by those authors are polyphyletic or paraphyletic.  相似文献   

9.
To study the potential importance of introgressive hybridization to the evolutionary diversification of a carabid beetle lineage, we studied intraspecific and trans-species polymorphisms in the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequence (1083 bp) in four species of the subgenus Ohomopterus (genus Carabus) in central and eastern Honshu, Japan. Of the four species, C. insulicola is parapatric with the other three, and can hybridize naturally with at least two. This species possesses two haplotypes of remote lineages. We classified ND5 haplotypes using polymerase chain reaction-restriction fragment length polymorphism with TaqI endonuclease for 524 specimens, and sequenced 143 samples. Analysis revealed that each species was polyphyletic in its mitochondrial DNA phylogeny, representing a marked case of trans-species polymorphism. Recent one-way introgression of mitochondria from C. arrowianus nakamurai to C. insulicola, and from C. insulicola to C. esakii, was inferred from the frequency of identical sequences between these species and from direct evidence of hybridization in their contact zones. Other intraspecific polymorphisms in the four species may be due to undetected introgressive hybridization (e.g. C. insulicola to C. maiyasanus) or from stochastic lineage sorting of ancestral polymorphisms. This beetle group has a genital lock-and-key system, with species-specific or subspecies-specific genital morphology that may act as a barrier to hybridization. However, our results demonstrate that introgressive hybridization has occurred multiple times, at least for mitochondria, despite differences among, and stability within, morphological characters that distinguish local populations. Thus, hybridization and introgression could have been key processes in the evolutionary diversification of Ohomopterus.  相似文献   

10.
With 33 recognized taxa, the tamarins, Saguinus spp., constitute the most diverse genus of New World monkeys (Platyrrhini), and are found almost exclusively within the Amazon basin. This diversity can be subdivided into three main morphological groups, based primarily on pelage characteristics, although there is also an ecologically important division between the small- and large-bodied forms (adult body weight ± 300 g vs. > 450 g, respectively). In the present study, the phylogenetic relationships among the large-bodied forms were analysed using the sequences of a fragment of the mitochondrial rRNA16S gene, from which 58 informative sites were identified. The analysis revealed the existence of four main lineages, three of which coincided with geographical and/or morphological patterns. However, Saguinus leucopus formed a highly distinct clade, contradicting expectations based on its morphology and distribution, but corroborating a previous study of the NADH dehydrogenase subunit I (ND1) gene. Whereas genetic differences between some closely related species were relatively small (< 1%), that observed between the two specimens of S. imperator was twice higher (± 2%), indicating the possible presence of distinct species within this taxon. Previous molecular clock analysis suggested that the earliest radiation event of the large-bodied tamarins occurred sometime in the lower Miocene, whereas the most recent events, such as the division of the closely related S. midas and S. niger would have occurred during the Pleistocene. Most of these events would thus have taken place before the formation of the present-day river system, which now constitutes a considerable barrier to gene flow among many populations.  相似文献   

11.
WE CONDUCTED A COMPREHENSIVE MOLECULAR PHYLOGENETIC STUDY FOR A GROUP OF CHAMELEONS FROM MADAGASCAR (CHAMAELEONIDAE: Calumma nasutum group, comprising seven nominal species) to examine the genetic and species diversity in this widespread genus. Based on DNA sequences of the mitochondrial gene (ND2) from 215 specimens, we reconstructed the phylogeny using a Bayesian approach. Our results show deep divergences among several unnamed mitochondrial lineages that are difficult to identify morphologically. We evaluated lineage diversification using a number of statistical phylogenetic methods (general mixed Yule-coalescent model; SpeciesIdentifier; net p-distances) to objectively delimit lineages that we here consider as operational taxonomic units (OTUs), and for which the taxonomic status remains largely unknown. In addition, we compared molecular and morphological differentiation in detail for one particularly diverse clade (the C. boettgeri complex) from northern Madagascar. To assess the species boundaries within this group we used an integrative taxonomic approach, combining evidence from two independent molecular markers (ND2 and CMOS), together with genital and other external morphological characters, and conclude that some of the newly discovered OTUs are separate species (confirmed candidate species, CCS), while others should best be considered as deep conspecific lineages (DCLs). Our analysis supports a total of 33 OTUs, of which seven correspond to described species, suggesting that the taxonomy of the C. nasutum group is in need of revision.  相似文献   

12.
We examined mitochondrial DNA (mtDNA) sequences and allozymes to assess possible modes of origin, clonal diversity, and evolutionary age in a triploid all-female fish of the genus Poeciliopsis from the state of Sinaloa, Mexico. Analysis of multilocus allozymes revealed that the Rio Mocorito biotype (Poeciliopsis monacha-lucida-viriosa) is trihybrid, carrying haploid genomes from three sexually reproducing species, Poeciliopsis monacha, Poeciliopsis lucida, and Poeciliopsis viriosa. Composite allozyme and mtDNA genotypes identified four clones, all bearing closely related mitochondrial haplotypes originally derived from P. monacha. Apparently these trihybrids arose endemically by addition of a haploid genome from P. viriosa, a local sexual species, to an allodiploid biotype, P. monacha-lucida, also found in the Rio Mocorito. The present analysis clearly revealed that P. monacha-lucida-viriosa arose independently of the two allotriploid biotypes that live in a river to the north (Rio Fuerte). Although the origins of allotriploidy in Poeciliopsis are less constrained phylogenetically and geographically than previously thought, known triploid biotypes all had relatively recent origins, which supports the notion that most asexual lineages are evolutionarily short-lived.  相似文献   

13.
The phylogenetic relationships of seven goose species and two of the subspecies representing the genus Anser were studied by approximately 1180 bp of mitochondrial DNA tRNAglu, control region and tRNAphe sequences. Despite obvious morphological and behavioural affinities among the species, their evolutionary relationships have not been studied previously. The small amount of genetic differentiation observed in the mitochondrial DNA indicates an extremely close evolutionary relationship between the Anser species. The sequence divergences between the species (0.9–5.5%) are among the lowest reported for avian species with speciation events of Anser geese dating to late Pliocene and Pleistocene. The species grouped into four mtDNA lineages: (1) snow and Ross’ goose, (2) greylag goose, (3) white‐fronted goose, and (4) bean, pink‐footed and lesser white‐fronted goose. The phylogenetic relationships of the most closely related species, bean, pink‐footed and lesser white‐fronted goose, indicate a period of rapid cladogenesis. The poor agreement between morphological relationships and the phylogenetic relationships indicated by mtDNA sequences implies that either ancestral polymorphism and lineage sorting, hybridization and introgression or convergent evolution has been involved.  相似文献   

14.
Five species of Eurasian birds displayed a range of mitochondrial DNA phylogeographic structures, including a single widespread lineage (common sandpiper), two geographically unsorted and closely related lineages (long-tailed tit), three partially overlapping closely related lineages (reed bunting), and two divergent geographically isolated lineages that rival species distinction (red-breasted flycatcher and skylark). Only the red-breasted flycatcher and the skylark displayed congruent phylogeographic structures. These five species represent different stages of diversification and speciation. There was little evidence that natural selection had influenced mitochondrial NADH dehydrogenase subunit 2 (ND2) sequences. In several instances, population growth was hypothesized, based on haplotype distributions within populations.  相似文献   

15.
Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species.  相似文献   

16.
Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.  相似文献   

17.
Aim The phylogeography of the two closely related species Pseudobarbus afer and Pseudobarbus phlegethon was investigated to assess the association of evolutionary processes, inferred from mitochondrial DNA (mtDNA) sequence variation, with hypothetical palaeoriver systems and other climatic and landscape changes. Location One western and several southern river systems in South Africa. Methods We sampled known populations and confirmed known distribution gaps. This was followed by an assessment of mtDNA control region sequence variation for 31 localities across 17 river systems across the range of the species complex. A map of possible offshore drainage patterns during the last major regression event was constructed based on bathymetry and geological studies. Results The genetic distinction of four major lineages of P. afer strongly correspond with proposed palaeoriver systems. However, a western ‘Forest’ lineage, is widespread across two such proposed systems and is closely related to P. phlegethon on the west coast of South Africa. Both the ‘Krom’ and ‘St Francis’ lineages were identified in the single palaeoriver system proposed for St Francis Bay. A fourth ‘Mandela’ lineage is restricted to the one or two palaeoriver systems proposed for Nelson Mandela Bay. Four minor lineages were identified within the Forest lineage and two within the Mandela lineage. Main conclusions The close relationship between P. phlegethon and the Forest lineage of P. afer can only be explained by a series of river captures. We suggest the Gourits River system as a historical link that could account for this relationship. On the south coast, lower sea levels than at present allowed confluence between currently isolated river systems, offering opportunities for dispersal among these populations. At present, isolation between different river systems rather than dispersal appears to have a dominant influence on mtDNA diversity.  相似文献   

18.
Inferring the evolutionary history of lineages often becomes difficult when gene histories are in conflict with each other. Introgression, for example, can cause DNA sequences from one species to be more similar to sequences of a different species and lead to incongruence amongst gene trees. However, incorporating congruent and incongruent locus‐specific phylogenetic estimates with the geographical distribution of lineages may provide valuable insight into evolutionary processes important to speciation. In this study, we investigated mitochondrial introgression within the Hyla eximia group to better understand its role in illuminating the evolutionary history and phylogeography of these treefrogs. We reconstructed and compared the matrilineal history of the Hyla eximia group with estimates of evolutionary history inferred from nuclear genes. We tested for introgression within the mitochondrial and nuclear genes using a posterior predictive checking approach. Reconstructions of the species tree based on the mitochondrial DNA (mtDNA) and nuclear DNA data were strongly discordant. Introgression between lineages was widespread in the mtDNA data set (145 occurrences amongst 11 of the 16 lineages), but uncommon in the nuclear genes (12 occurrences amongst four of the 16 lineages). Nonetheless, the geographical structuring of mtDNA within species provides valuable information on biogeographical areas, ancient areas of hybridization, and unique histories of lineages within the H. eximia group. These results suggest that the combination of nuclear, mitochondrial, and spatial information can provide a more complete picture of ‘how evolutionary history played out’, particularly in cases where mitochondrial introgression is known to occur. © 2014 The Linnean Society of London  相似文献   

19.
The traditional avian subfamily Furnariinae, a group of terrestrial ovenbirds typical of the Andean and Patagonian arid zones, consists of the genera Furnarius, Cinclodes, Geositta, Upucerthia, Chilia, and Eremobius. We investigated phylogenetic relationships within the Furnariinae, with particular attention to the nine species of the genus Upucerthia, using nuclear and mitochondrial DNA sequences from all genera in the subfamily. Upucerthia was found to be highly polyphyletic, its constituent species forming four non-sister clades: (1) a basal lineage consisting of two Upucerthia species, U. ruficaudus and U. andaecola, as well as the monotypic genera Eremobius and Chilia; (2) a lineage consisting of U. harterti and U. certhioides, two species behaviorally divergent from other Upucerthia species; (3) a lineage consisting of U. serrana, which is not closely related to any other Upucerthia species; and (4) a lineage, sister to Cinclodes, consisting of the four Upucerthia species U. dumetaria, U. albigula, U. validirostris, and U. jelskii. The larger Furnariinae was also found to be highly polyphyletic; the terrestrial open country ecotype characteristic of this subfamily occurs in four unrelated clades in the family Furnariidae, including a basal lineage as well as derived lineages. Although the large degree of divergence among Upucerthia clades was not previously recognized, owing to ecological, behavioral, and morphological similarities, the groupings correspond closely to relationships suggested by plumage. This is in contrast to studies of other avian genera in which plumage patterns have been shown to be extensively convergent. The generic names Upucerthia and Ochetorhynchus are available for two of the former Upucerthia clades; new generic names may be warranted for the other two.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号