首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

2.
The steady-state oxidation of ferrocytochrome c by cytochrome oxidase monitored spectrophotometrically showed that: (1) the kinetics were strictly biphasic with purified enzyme, while mitochondrial membrane-bound enzyme exhibited multiphasic kinetics with extended low affinity phases; (2) the TNmax for the highest affinity phase was as slow as 5-10 electron X s-1 for both preparations, while for the low affinity phases it was about 45 electron X s-1 for the purified enzyme and 150 electron X s-1 for the mitochondrial membrane-bound enzyme; (3) reconstitution of purified enzyme into acidic phospholipid vesicles partially repleted the extended low affinity phases, while reconstitution into uncharged vesicles had no effect.  相似文献   

3.
Studies were undertaken to assess the postulated involvement of subunit III in the proton-linked functions of cytochrome c oxidase. The effect of pH on the steady-state kinetic [corrected] parameters of subunit III containing and subunit III depleted cytochrome oxidase was determined by using beef heart and rat liver enzymes reconstituted into phospholipid vesicles. The TNmax and Km values for the III-containing enzyme increase with decreasing pH in a manner quantitatively similar to that reported by Thornstrom et al. [(1984) Chem. Scr. 24, 230-235], giving three apparent pKa values of less than 5.0, 6.2, and 7.8. The maximal activities of the subunit III depleted enzymes (beef heart and rat liver) show a similar dependence on pH, but the Km values are consistently higher than those of the III-containing enzyme, an effect that is accentuated at low pH. The pH dependence of TNmax/Km for both forms of the enzyme (+/- subunit III) indicates that protonation of a group with an apparent pKa of 5.7 lowers the affinity for substrate (cytochrome c) independently of a continued increase in maximal velocity. N,N'-Dicyclohexylcarbodiimide (DCCD) decreases the pH responsiveness of the electron-transfer activity to the same extent in both III-containing and III-depleted enzymes, indicating that this effect is mediated by a peptide other than subunit III. Control of intramolecular electron transfer by a transmembrane pH gradient (or alkaline intravesicular pH) is shown to occur in cytochrome oxidase vesicles with cytochrome c as the electron donor, in agreement with results of Moroney et al. [(1984) Biochemistry 23, 4991-4997] using hexaammineruthenium(II) as the reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The aggregation state of two types of bovine heart cytochrome c oxidase preparations in the presence of laurylmaltoside was investigated by high performance liquid chromatography in two buffers of ionic strengths of 388 mM and 45 mM, respectively. At high ionic strength, it was found that the Fowler cytochrome c oxidase preparation was monomeric (Mr = 2 X 10(5)), while monomers and dimers (2 X aa3, Mr = 4 X 10(5)) could be isolated from the Yonetani preparation. Under these conditions there was no rapid equilibrium between the two forms. Covalent cytochrome c oxidase-cytochrome c complexes were largely dimeric, and addition of ascorbate and cytochrome c to the oxidase also promoted dimerization. At low ionic strength (I = 45 mM) in the presence of laurylmaltoside the oxidase and the covalent complex with cytochrome c were largely monomeric. In the steady-state oxidation of ferrous horse heart cytochrome c, the monomeric enzyme displayed biphasic kinetics at I = 45 mM. This suggests that the presence of high- and low-affinity reactions is an intrinsic property of the cytochrome c oxidase monomer.  相似文献   

5.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

6.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes and the kinetics of cytochrome c oxidation were measured by the polarographic and photometric method under uncoupled conditions in the presence of various polyvalent anions. In order to distinguish between specific and unspecific ionic effects of ATP, the photolabelling reagent 8-azido-ATP was applied. Covalently bound ATP at the enzyme complex caused the same increase of Km for cytochrome c as free ATP, if measured by the photometric assay. The increase of Km by photolabelling with 8-azido-ATP was completely prevented by ATP, but not by ADP. The data indicate the occurrence of a specific binding site for ATP at the cytosolic side of cytochrome-c oxidase, which, after binding of ATP, changes the kinetics of cytochrome c oxidation.  相似文献   

7.
The steady-state kinetics of high- and low-affinity electron transfer reactions between various cytochromes c and cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) preparations were studied spectrophotometrically and polarographically. The dissociation constants for the binding of the first and second molecules of horse cytochrome c (I = 15 mM) are 5.10(-8) M and 1.10(-5) M, respectively, close to the spectrophotometric Km values and consistent with the controlled binding model for the interaction between cytochrome c and cytochrome oxidase (Speck, S.H., Dye, D. and Margoliash, E. (1984) Proc. Natl. Acad. Sci. USA 81, 346-351) which postulates that the binding of a second molecule of cytochrome c weakens that of the first, resulting in low-affinity kinetics. While the Km of the polarographically assayed high-affinity reaction is comparable to that observed spectrophotometrically, the low-affinity Km is over an order of magnitude smaller and cannot be attributed to the binding of a second molecule of cytochrome c. Increasing the viscosity has no effect on the Vmax of the low-affinity reaction assayed polarographically, but increases the Km. Thus, the transition from high- to low-affinity kinetics is dependent on the frequency of productive collisions, as expected for a hysteresis model ascribing the transition to the trapping of the oxidase in a primed state for turnover. At ionic strengths above 150 mM, the rate of cytochrome c oxidation decreases without any correlation to the calculated net charge of the cytochrome c, indicating rate-limiting rearrangement of the two proteins in proximity to each other.  相似文献   

8.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

9.
The long-known biphasic response of cytochrome c oxidase to the concentration of cytochrome c has been explained, alternatively, by the presence of a catalytic and a regulatory site on the oxidase, by negative cooperativity between adjacent active sites in dimeric oxidase, or by a transition of the enzyme molecule between different conformational states. The three mechanistic hypotheses allow testable predictions about the relationship between substrate binding and steady-state kinetics catalyzed by the monomeric and dimeric (or oligomeric) enzyme. We have tested these predictions on monomeric, dimeric, and oligomeric beef heart oxidase and on monomeric oxidase from Paracoccus denitrificans. The aggregation state of the oxidase was evaluated from the sedimentation equilibrium in the ultracentrifuge and by gel chromatography. The binding of cytochrome c to cytochrome c oxidase was measured by spectrophotometric titration of cytochrome c oxidase with cytochrome c. The procedure makes use of a small perturbation in the Soret band of the absorption spectrum of the cytochrome c-cytochrome c oxidase complex. The steady-state oxidation of cytochrome c was followed spectroscopically by an automated assay procedure, and the kinetic parameters were deduced by numerical analysis of several hundred initial rate assays in the substrate concentration range 0.15-30 microM. The following results were obtained: (1) The kinetics of cytochrome c oxidation are always biphasic at low ionic strength, independent of the aggregation state of the enzyme. (2) The kinetics become apparently monophasic at ionic strengths above 100 mM or at slightly acidic pH values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

11.
A minimal catalytic cycle for cytochrome c oxidase has been suggested, and the steady-state kinetic equation for this mechanism has been derived. This equation has been used to simulate experimental data for the pH dependence of the steady-state kinetic parameters, kcat and Km. In the simulations the rate constants for binding and dissociation of cytochrome c and for two internal electron-transfer steps have been allowed to vary, whereas fixed experimental values (for pH 7.4) have been used for the other rate constants. The results show that the dissociation of the product, ferricytochrome c, cannot be rate-limiting under all conditions, but that intramolecular electron-transfer steps also limit the rate. They also demonstrate that Km can differ considerably from the dissociation constant for the cytochrome c-oxidase complex. Published values for the rate constant for the dissociation of ferricytochrome c are too small to account for the steady-state rates. It is suggested that, at high concentrations, ferryocytochrome c transfers an electron to a cytochrome c molecule which remains bound to the oxidase. This can also explain the nonhyperbolic kinetics, which is observed at low substrate concentrations.  相似文献   

12.
1. A detailed study of cytochrome c oxidase activity with Keilin-Hartree particles and purified beef heart enzyme, at low ionic strength and low cytochrome c concentrations, showed biphasic kinetics with apparent Km1 = 5 x 10(-8) M, and apparent Km2 = 0.35 to 1.0 x 10(-6) M. Direct binding studies with purified oxidase, phospholipid-containing as well as phospholiptaining aid-depleted, demonstrated two sites of interaction of cytochrome c with the enzyme, with KD1 less than or equal to 10(-7) M, and KD2 = 10(-6) M. 2. The maximal velocities as low ionic strength increased with pH and were highest above ph 7.5. 3. The presence and properties of the low apparent Km phase of the kinetics were strongly dependent on the nature and concentration of the anions in the medium. The multivalent anions, phosphate, ADP, and ATP, greatly decreased the proportion of this phase and similarly decreased the amount of high affinity cytochrome c-cytochrome oxidase complex formed. The order of effectiveness was ATP greater than ADP greater than P1 and since phosphate binds to cytochrome c more strongly than the nucleotides, it is concluded that the inhibition resulted from anion interaction with the oxidase. 4mat low concentrations bakers' yeast iso-1, bakers' yeast iso-1, horse, and Euglena cytochromes c at high concentrations all attained the same maximal velocity. The different proportions of low apparent Km phase in the kinetic patterns of these cytochromes c correlated with the amounts of high affinity complex formed with purified cytochrome c oxidase. 5. The apparent Km for cytochrome c activity in the succinate-cytochrome c reductase system of Keilin-Hartree particles was identical with that obtained with the oxidase (5 x 10(-8) M), suggesting the same site serves both reactions. 6. It is concluded that the observed kinetics result from two catalytically active sites on the cytochrome c oxidase protein of different affinities for cytochrome c. The high affinity binding of cytochrome c to the mitochondrial membrane is provided by the oxidase and at this site cytochrome c can be reduced by cytochrome c1. Physiological concentrations of ATP decrease the affinity of this binding to the point that interaction of cytochrome c with numerous mitochondrial pholpholipid sites can competitively remove cytochrome c from the oxidase. It is suggested that this effect of ATP represents a possible mechanism for the control of electron flow to the oxidase.  相似文献   

13.
P E Morin  E Freire 《Biochemistry》1991,30(34):8494-8500
The kinetic and thermodynamic parameters associated with the enzymatic reaction of yeast cytochrome c oxidase with its biological substrate, ferrocytochrome c, have been measured by using a titration microcalorimeter to monitor directly the rate of heat production or absorption as a function of time. This technique has allowed determination of both the energetics and the kinetics of the reaction under a variety of conditions within a single experiment. Experiments performed in buffer systems of varying ionization enthalpies allow determination of the net number of protons absorbed or released during the course of the reaction. For cytochrome c oxidase the intrinsic enthalpy of reaction was determined to be -16.5 kcal/mol with one (0.96) proton consumed for each ferrocytochrome c molecule oxidized. Activity measurements at salt concentrations ranging from 0 to 200 mM KCl in the presence of 10 mM potassium phosphate, pH 7.40, and 0.5 mM EDTA display a biphasic dependence of the electron transferase activity upon ionic strength with a peak activity observed near 50 mM KCl. The ionic strength dependence was similar for both detergent-solubilized and membrane-reconstituted cytochrome c oxidase. Despite the large ionic strength dependence of the kinetic parameters, the enthalpy measured for the reaction was found to be independent of ionic strength. Additional experiments involving direct transfer of the enzyme from low to high salt conditions produced negligible enthalpy changes that remained constant within experimental error throughout the salt concentrations studied (0-200 mM KCl). These results indicate that the salt effect on the enzyme activity is of entropic origin and further suggest the absence of a major conformational change in the enzyme due to changes in ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effect of chronic alcohol consumption on steady-state kinetic characteristics of cytochrome oxidase in rat liver was studied using submitochondrial particles prepared from ethanol-fed and control rats. Preparations from both control and alcoholic rats had equivalent apparent Km values for cytochrome c of 13 microM in the presence of phenazine methosulfate or 19 microM with N,N,N',N'-tetramethylphenylene diamine as oxidation-reduction mediators at physiological ionic strength. Both preparations showed comparable stimulation (approx. 3-fold) of oxidase activity following detergent solubilization of the membrane and similar temperature dependence for oxidase activity. Under all conditions, preparations from alcohol-fed rats displayed 30 to 50% lower rats of cytochrome oxidase activity per unit membrane protein than those from control rats. The diminution in specific activity per mg protein was accompanied by a similar decline in heme aa3 content, as has been noted in previous studies. When expressed on a turnover number basis, the molecular activity of cytochrome oxidase (natoms O/min per nmol heme a) was equivalent in both alcoholic and control preparations. The results indicate that the intrinsic kinetic characteristics of cytochrome oxidase are not changed by alcohol consumption. The data suggest that the characteristic decline in heme aa3 content and cytochrome oxidase specific activity seen in ethanol-fed rats does not arise from alterations in the accessibility of the oxidase towards cytochrome c, or from changes in bulk phase lipid composition or physical properties. The results support the conclusion that ethanol consumption decreases the membrane content of functionally active oxidase molecules, but does not change the catalytic properties of these oxidase molecules.  相似文献   

15.
The role of the nuclear-encoded subunit VIa in the regulation of cytochrome oxidase by ATP was investigated in isolated yeast mitochondria. As the subunit VIa-null strain possesses a fully active and assembled cytochrome oxidase, multiple ATP-regulating sites were characterized with respect to their location and their kinetic effect: (a) intra-mitochondrial ATP inhibited the complex IV activity of the null strain, whereas the prevailing effect of ATP on the wild-type strain, at low ionic strength, was activation on the cytosolic side of complex IV, mediated by subunit VIa. However, at physiological ionic strength (i.e. approximately 200 mM), activation by ATP was absent but inhibition was not impaired; (b) in ethanol-respiring mitochondria, when the electron flux was modulated using a protonophoric uncoupler, the redox state of aa3 cytochromes varied with respect to activation (wild-type) or inhibition (null-mutant) of the cytochrome oxidase by ATP; (c) consequently, the control coefficient of cytochrome oxidase on respiratory flux, decreased (wild-type) or increased (null-mutant) in the presence of ATP; (d) considering electron transport from cytochrome c to oxygen, the response of cytochrome oxidase to its thermodynamic driving force was increased by ATP for the wild-type but not for the mutant subunit. Taken together, these findings indicate that at physiological concentration, ATP regulates yeast cytochrome oxidase via subunit-mediated interactions on both sides of the inner membrane, thus subtly tuning the thermodynamic and kinetic control of respiration. This study opens up new prospects for understanding the feedback regulation of the respiratory chain by ATP.  相似文献   

16.
The mechanism of electron transfer catalyzed by cytochrome oxidase was investigated by monitoring the reaction of cytochrome oxidase with cytochrome c under carefully controlled anaerobic conditions. The kinetics of the reaction were examined by varying conditions of ionic strength, inhibitor binding, and oxidation-reduction potential. An analogue of cytochrome c in which the iron atom was replaced with cobalt was used to probe the effect of redox potential on the reaction. Under conditions of low ionic strength, there is very rapid oxidation of cytochrome c and reduction of oxidase which occurs at a rate of 3 X 10(7) M-1 s-1. The number of electrons transferred exhibit a hyperbolic dependence on the concentration of cytochrome c reaching a maximum of 2 electrons transferred at the highest concentration of reduced cytochrome c employed. The total number of electrons transferred was always observed to be distributed equally between cytochrome a and a second acceptor which appears to be the associated copper center; electron transfer to cytochrome a3 did not occur in the absence of oxygen. Substitution of cytochrome c by the cobalt analogue (which represents a decrease in oxidation-reduction potential of about 400 mV) yielded identical results indicating that the origin of the lack of reactivity of cytochrome a3 is of a kinetic nature. The effect of increasing the ionic strength on the reaction was 2-fold: a marked decrease in reaction rate and the appearance of biphasic kinetics with the amplitude of the very fast absorbance changes at 605 nm decreasing from 80% to 40% of the total anticipated from static absorbance measurements. Each of the two phases accounted for a maximum of 1 electron at the highest ionic strength employed. These results are simulated in terms of a sample kinetic reaction scheme involving a two-step electron transfer at one binding site.  相似文献   

17.
Purification of cytochrome-c oxidase retaining its pulsed form   总被引:2,自引:0,他引:2  
A new purification procedure for cytochrome-c oxidase from bovine heart mitochondria is described. The enzyme was purified by selective solubilization in Triton X-100 and subsequent hydroxyapatite and gel chromatography. The preparation was highly pure and active. The subunit composition and steady-state kinetics were found to be the same as those reported for other preparations. In contrast to most of the previously published protocols the method presented here resulted in a preparation which had a rapid intramolecular electron transfer from cytochrome a to cytochrome a3, i.e. it was found to have retained its pulsed state. This correlated with monoexponential cyanide-binding kinetics. The formation of resting kinetics and biphasic cyanide-binding kinetics was shown to be induced by a short incubation at pH 5.0.  相似文献   

18.
The stability of monomeric and dimeric bovine heart cytochrome c oxidase in laurylmaltoside-containing buffers of high ionic strength allowed separation of the two forms by gel-filtration high-performance liquid chromatography (HPLC). A solution of the dimeric oxidase could be diluted without monomerisation. Both monomeric and dimeric cytochrome c oxidase showed biphasic steady-state kinetics when assayed spectrophotometrically at low ionic strength. Thus, the biphasic kinetics did not result from negative cooperativity between the two adjacent cytochrome c binding sites of the monomers constituting the dimeric oxidase. On polyacrylamide gels in the presence of sodium dodecyl sulphate (SDS) a fraction of subunit III of the dimeric enzyme migrated as a dimer, a phenomenon not seen with the monomeric enzyme. This might suggest that in the dimeric oxidase subunit III lies on the contact surface between the protomers. If so, the presumably hydrophobic interaction between the two subunits III resisted dissociation by SDS to some extent. Addition of sufficient ascorbate and cytochrome c to the monomeric oxidase to allow a few turnovers induced slow dimerisation (on a time-scale of hours). This probably indicates that one of the transient forms arising upon reoxidation of the reduced enzyme is more easily converted to the dimeric state than the resting enzyme. Gel-filtration HPLC proved to be a useful step in small-scale purification of cytochrome c oxidase. In the presence of laurylmaltoside the monomeric oxidase eluted after the usual trace contaminants, the dimeric Complex III and the much larger Complex I. The procedure is fast and non-denaturing, although limited by the capacity of available columns.  相似文献   

19.
Introducing site-directed mutations in surface-exposed residues of subunit II of the heme aa3 cytochrome c oxidase of Paracoccus denitrificans, we analyze the kinetic parameters of electron transfer from reduced horse heart cytochrome c. Specifically we address the following issues: (a) which residues on oxidase contribute to the docking site for cytochrome c, (b) is an aromatic side chain required for electron entry from cytochrome c, and (c) what is the molecular basis for the previously observed biphasic reaction kinetics. From our data we conclude that tryptophan 121 on subunit II is the sole entry point for electrons on their way to the CuA center and that its precise spatial arrangement, but not its aromatic nature, is a prerequisite for efficient electron transfer. With different reaction partners and experimental conditions, biphasicity can always be induced and is critically dependent on the ionic strength during the reaction. For an alternative explanation to account for this phenomenon, we find no evidence for a second cytochrome c binding site on oxidase.  相似文献   

20.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号