首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor-activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization.  相似文献   

4.
Nod factor is a critical signalling molecule in the establishment of the legume/rhizobial symbiosis. The Nod factor of Sinorhizobium meliloti carries O-sulphate, O-acetate and C16:2 N-acyl attachments that define its activity and host specificity. Here we assess the relative importance of these modifications for the induction of calcium spiking in Medicago truncatula. We find that Nod factor structures lacking the O-sulphate, structures lacking the O-acetate and N-acyl groups, and structures lacking the O-acetate combined with a C18:1 N-acyl group all show calcium spiking when applied at high concentrations. These calcium responses are blocked in dmi1 and dmi2 mutants, suggesting that they function through the Nod factor signal transduction pathway. The dmi3 mutant, which is proposed to function in the Nod factor signal transduction pathway downstream of calcium spiking, shows increased sensitivity to Nod factor. This increased sensitivity is only active with wild-type Nod factor and was not present when the plants were treated with mutant Nod factor structures. We propose that the Nod factor signal transduction pathway is under negative feedback regulation that is activated at or downstream of DMI3 and requires structural components of the Nod factor molecule for activity.  相似文献   

5.
Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.  相似文献   

6.
Shaw SL  Long SR 《Plant physiology》2003,131(3):976-984
Modulation of intracellular calcium levels plays a key role in the transduction of many biological signals. Here, we characterize early calcium responses of wild-type and mutant Medicago truncatula plants to nodulation factors produced by the bacterial symbiont Sinorhizobium meliloti using a dual-dye ratiometric imaging technique. When presented with 1 nM Nod factor, root hair cells exhibited only the previously described calcium spiking response initiating 10 min after application. Nod factor (10 nM) elicited an immediate increase in calcium levels that was temporally earlier and spatially distinct from calcium spikes occurring later in the same cell. Nod factor analogs that were structurally related, applied at 10 nM, failed to initiate this calcium flux response. Cells induced to spike with low Nod factor concentrations show a calcium flux response when Nod factor is raised from 1 to 10 nM. Plant mutants previously shown to be deficient for the calcium spiking response (dmi1 and dmi2) exhibited an immediate, truncated calcium flux with 10 nM Nod factor, demonstrating a competence to respond to Nod factor but an impaired ability to generate a full biphasic response. These results demonstrate that the legume root hair cell exhibits two independent calcium responses to Nod factor triggered at different agonist concentrations and suggests an early branch point in the Nod factor signal transduction pathway.  相似文献   

7.
Ethylene signal transduction   总被引:22,自引:0,他引:22  
  相似文献   

8.
Oldroyd GE  Long SR 《Plant physiology》2003,131(3):1027-1032
Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod factor signaling. Mutants at this locus are blocked for Nod factor-induced gene expression and show a reduced root hair deformation response. nsp2 plants also show a complete absence of infection and cortical cell division following Sinorhizobium meliloti inoculation. Nod factor-induced calcium spiking, one of the earliest responses tested, is still functional in these mutant plants. We conclude that the gene NSP2 is a component of the Nod factor signal transduction pathway that lies downstream of the calcium-spiking response.  相似文献   

9.
10.
Plant genes induced during early root colonization of Medicago truncatula Gaertn. J5 by a growth-promoting strain of Pseudomonas fluorescens (C7R12) have been identified by suppressive subtractive hybridization. Ten M. truncatula genes, coding proteins associated with a putative signal transduction pathway, showed an early and transient activation during initial interactions between M. truncatula and P. fluorescens, up to 8 d after root inoculation. Gene expression was not significantly enhanced, except for one gene, in P. fluorescens-inoculated roots of a Myc(-)Nod(-) genotype (TRV25) of M. truncatula mutated for the DMI3 (syn. MtSYM13) gene. This gene codes a Ca(2+) and calmodulin-dependent protein kinase, indicating a possible role of calcium in the cellular interactions between M. truncatula and P. fluorescens. When expression of the 10 plant genes was compared in early stages of root colonization by mycorrhizal and rhizobial microsymbionts, Glomus mosseae activated all 10 genes, whereas Sinorhizobium meliloti only activated one and inhibited four others. None of the genes responded to inoculation by either microsymbiont in roots of the TRV25 mutant. The similar response of the M. truncatula genes to P. fluorescens and G. mosseae points to common molecular pathways in the perception of the microbial signals by plant roots.  相似文献   

11.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

12.
The establishment of the symbiosis between legume plants and rhizobial bacteria depends on the production of rhizobial lipo-chitooligosaccharidic signals (the Nod factors) that are specifically recognized by roots of the host plant. In Medicago truncatula, specific recognition of Sinorhizobium meliloti and its Nod factors requires the NFP (Nod factor perception) gene, which encodes a putative serine/threonine receptor-like kinase (RLK). The extracellular region of this protein contains three tandem lysin motifs (LysMs), a short peptide domain that is implicated in peptidoglycan or chitin binding in various bacterial or eukaryotic proteins, respectively. We report here the homology modeling of the three LysM domains of M. truncatula NFP based on the structure of a LysM domain of the Escherichia coli membrane-bound lytic murein transglycosidase D (MltD). Expression of NFP in a homologous system (M. truncatula roots) revealed that the protein is highly N-glycosylated, probably with both high-mannose and complex glycans. Surface analysis and docking calculations performed on the models of the three domains were used to predict the most favored binding modes for chitooligosaccharides and Nod factors. A convergent model can be proposed where the sulfated, O-acetylated lipo-chitooligosaccharidic Nod factor of S. meliloti binds in similar orientation to the three LysM domains of M. truncatula NFP. N-glycosylation is not expected to interfere with Nod factor binding in this orientation.  相似文献   

13.
The DMI1, DMI2, and DMI3 genes of Medicago truncatula, which are required for both nodulation and mycorrhization, control early steps of Nod factor signal transduction. Here, we have used diverse approaches to pave the way for the map-based cloning of these genes. Molecular amplification fragment length polymorphism markers linked to the three genes were identified by bulked segregant analysis. Integration of these markers into the general genetic map of M. truncatula revealed that DMI1, DMI2, and DMI3 are located on linkage groups 2, 5, and 8, respectively. Cytogenetic studies using fluorescent in situ hybridization (FISH) on mitotic and pachytene chromosomes confirmed the location of DMI1, DMI2, and DMI3 on chromosomes 2, 5, and 8. FISH-pachytene studies revealed that the three genes are in euchromatic regions of the genome, with a ratio of genetic to cytogenetic distances between 0.8 and 1.6 cM per microm in the DMI1, DMI2, and DMI3 regions. Through grafting experiments, we showed that the genetic control of the dmi1, dmi2, and dmi3 nodulation phenotypes is determined at the root level. This means that mutants can be transformed by Agrobacterium rhizogenes to accelerate the complementation step of map-based cloning projects for DMI1, DMI2, and DMI3.  相似文献   

14.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting a number of key developmental responses in the roots of legume hosts. One of the earliest responses of root hairs to Nod factors is the induction of sharp oscillations of cytoplasmic calcium ion concentration ("calcium spiking"). This response was first characterised in Medicago sativa and Nod factors were found to be unable to induce calcium spiking in a nodulation-defective mutant of M. sativa. The fact that this mutant lacked any morphological response to Nod factors raised the question of whether calcium spiking could be part of a Nod factor-induced signal transduction pathway leading to nodulation. More recently, calcium spiking has been described in a model legume, Medicago truncatula, and in pea. When nodulation-defective mutants were tested for the induction of calcium spiking in response to Nod factors, three loci of pea and two of M. truncatula were found to be necessary for Nod factor-induced calcium spiking. These loci are also known to be necessary for Nod factor-induction of symbiotic responses such as root hair deformation, nodulin gene expression and cortical cell division. These results therefore constitute strong genetic evidence for the role of calcium spiking in Nod factor transduction. This system provides an opportunity to use genetics to study ligand-stimulated calcium spiking as a signal transduction event.  相似文献   

15.
16.
MOTIVATION: There is an imperative need to integrate functional genomics data to obtain a more comprehensive systems-biology view of the results. We believe that this is best achieved through the visualization of data within the biological context of metabolic pathways. Accordingly, metabolic pathway reconstruction was used to predict the metabolic composition for Medicago truncatula and these pathways were engineered to enable the correlated visualization of integrated functional genomics data. Results: Metabolic pathway reconstruction was used to generate a pathway database for M. truncatula (MedicCyc), which currently features more than 250 pathways with related genes, enzymes and metabolites. MedicCyc was assembled from more than 225,000 M. truncatula ESTs (MtGI Release 8.0) and available genomic sequences using the Pathway Tools software and the MetaCyc database. The predicted pathways in MedicCyc were verified through comparison with other plant databases such as AraCyc and RiceCyc. The comparison with other plant databases provided crucial information concerning enzymes still missing from the ongoing, but currently incomplete M. truncatula genome sequencing project. MedicCyc was further manually curated to remove non-plant pathways, and Medicago-specific pathways including isoflavonoid, lignin and triterpene saponin biosynthesis were modified or added based upon available literature and in-house expertise. Additional metabolites identified in metabolic profiling experiments were also used for pathway predictions. Once the metabolic reconstruction was completed, MedicCyc was engineered to visualize M. truncatula functional genomics datasets within the biological context of metabolic pathways. Availability: freely accessible at http://www.noble.org/MedicCyc/  相似文献   

17.
The microtubule (MT) cytoskeleton is an important part of the tip-growth machinery in legume root hairs. Here we report the effect of Nod factor (NF) on MTs in root hairs of Medicago truncatula. In tip-growing hairs, the ones that typically curl around rhizobia, NF caused a subtle shortening of the endoplasmic MT array, which recovered within 10 min, whereas cortical MTs were not visibly affected. In growth-arresting root hairs, endoplasmic MTs disappeared shortly after NF application, but reformed within 20 min, whereas cortical MTs remained present in a high density. After NF treatment, growth-arresting hairs were swelling at their tips, after which a new outgrowth formed that deviated with a certain angle from the former growth axis. MT depolymerization with oryzalin caused a growth deviation similar to the NF; whereas, combined with NF, oryzalin increased and the MT-stabilizing drug taxol suppressed NF-induced growth deviation. The NF-induced disappearance of the endoplasmic MTs correlated with a loss of polar cytoarchitecture and straight growth directionality, whereas the reappearance of endoplasmic MTs correlated with the new set up of polar cytoarchitecture. Drug studies showed that MTs are involved in determining root hair elongation in a new direction after NF treatment.  相似文献   

18.
19.
Numerous studies have now shown that the amyloid beta-protein (Abeta), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Abeta) hypothesis proposes that the continuous disruption of normal synaptic physiology by Abeta contributes to the development of Alzheimer disease. However, there is little consensus about how Abeta mediates this inhibition at the molecular level. Using mouse primary hippocampal neurons, we observed that a brief treatment with cell-derived, soluble, human Abeta disrupted the activation of three kinases (Erk/MAPK, CaMKII, and the phosphatidylinositol 3-kinase-activated protein Akt/protein kinase B) that are required for long term potentiation, whereas two other kinases (protein kinase A and protein kinase C) were stimulated normally. An antagonist of the insulin receptor family of tyrosine kinases was found to mimic the pattern of Abeta-mediated kinase inhibition. We then found that soluble Abeta binds to the insulin receptor and interferes with its insulin-induced autophosphorylation. Taken together, these data demonstrate that physiologically relevant levels of naturally secreted Abeta interfere with insulin receptor function in hippocampal neurons and prevent the rapid activation of specific kinases required for long term potentiation.  相似文献   

20.
The rhizobial-derived signaling molecule Nod factor is essential for the establishment of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Nod factor perception and signal transduction in the plant involve calcium spiking and lead to the induction of nodulation gene expression. It has previously been shown that the heterotrimeric G-protein agonist mastoparan can activate nodulation gene expression in a manner analogous to Nod factor activation of these genes and this requires DOESN'T MAKE INFECTIONS3 (DMI3), a calcium- and calmodulin-dependent protein kinase (CCaMK) that is required for Nod factor signaling. Here we show that mastoparan activates oscillations in cytosolic calcium similar but not identical to Nod factor-induced calcium spiking. Mastoparan-induced calcium changes occur throughout the cell, whereas Nod factor-induced changes are restricted to the region associated with the nucleus. Mastoparan-induced calcium spiking occurs in plants mutated in the receptor-like kinases NOD FACTOR PERCEPTION and DMI2 and in the putative cation channel DMI1, which are all required for Nod factor induction of calcium spiking, indicating either that mastoparan functions downstream of these components or that it uses an alternative mechanism to Nod factor for activation of calcium spiking. However, both mastoparan and Nod factor-induced calcium spiking are inhibited by cyclopiazonic acid and n-butanol, suggesting some common mechanisms underpinning these two calcium agonists. The fact that mastoparan and Nod factor both activate calcium spiking and can induce nodulation gene expression in a DMI3-dependent manner strongly implicates CCaMK in the perception and transduction of the calcium signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号