首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycling of soil carbon in the first year after a clear-felling was compared with that before the felling in a Japanese red pine forest in Hiroshima Prefecture, west Japan. The daily mean temperature at the soil surface in summer was increased after the felling in comparison to that before felling, and the water content of both the A0 layer and the surface mineral soil was decreased due to the loss of the forest canopy. The rate of weight loss of the A0 layer was reduced after felling. However, accumulation of the A0 layer rapidly decreased because of the lack of litter supply to the forest floor. Low soil respiration after felling was mainly caused by the cessation of root respiration. Analysis of annual soil carbon cycling was then conducted using a compartment model. The relative decomposition rate of the A0 layer decreased whereas that of humus and dead roots in mineral soil increased to some extent after felling. The accumulation of carbon in mineral soil, however, increased slightly due to the supply of humus from roots killed by the felling.  相似文献   

2.
A simulation model of soil carbon cycling was developed based on the data observed in a mid-temperate forest in Yoshiwa, Hiroshima Prefecture, Japan, and soil carbon cycling and carbon budget in a mature forest stand and following clear-cutting were calculated on a daily basis using daily air temperature and precipitation data. The seasonal change in the amount of the A0 layer was characterized by a decrease from spring to autumn due to rapid decomposition of litter, and recovery in late autumn due to a large litterfall input. There was little change in the amount of humus in mineral soil. These estimates coincides closely with those observed in the field. Most flow rates and the accumulation of soil carbon decreased very markedly just after clear-cutting. The A0 layer reached its minimum in 10 years, and recovered its loss within 50–60 years after cutting. A large loss of carbon was observed just after cutting, but the balance changed from negative to positive in 15 years after cutting. The total loss of soil carbon following cutting recovered within 30 years, and nearly the same amount of carbon as that stocked in the timber before harvesting accumulated 70–80 years after cutting. The calculation by the simulation model was made using the assumption that the increase in atmospheric CO2 promoted the primary production rate by 10% over the last three decades. The result suggests that about 8 t C ha-1 was sunk into soils of the mid-temperate forest over the same period. It indicates that forest soils may be one of the main sinks for atmospheric CO2.  相似文献   

3.
Soil carbon cycling was studied in Japanese cedar plantations with different stand ages after clear-cutting and was analyzed by a compartment model. The amount of biomass and the litterfall rate increased rapidly with the growth of Japanese cedar, which were approximated by a simple logistic function of stand age. The accumulation of A0 layer decreased from 21tha–1 to 5tha–1 during the 10years following clear-cutting, and then recovered to nearly the same level as before clear-cutting within 20years after clear-cutting, although the amount of soil carbon in the mineral soil recovered more than 40years after clear-cutting. The total and mineral soil respiration rates increased rapidly after clear-cutting and gradually decreased in young stands and stabilized in old stands. The relative decomposition rate of the A0 layer and organic matters in mineral soil was high in the young stands because of the relatively high soil temperature rather than the soil moisture content. After the closing up of the canopy, the relative decomposition rates of the A0 layer and humus in the mineral soil stabilized at 0.14 to 0.16y–1 and 0.005 to 0.013y–1, respectively. Consequently, soil carbon cycling was strongly affected by clear-cutting. The amount of soil carbon rapidly decreased because of the cessation of litterfall and the increase of the relative decomposition rate of the A0 layer and humus, and recovered gradually to the level before clear-cutting with the growth of the cedar plantation. The change in soil carbon cycling with stand development was partly caused by the change in soil temperature and moisture content but was mainly caused by the amount of cedar litterfall which changed significantly in the early stage of the stand following clear-cutting, and became slower and leveled off in the late stage with stabilization of the environmental conditions and litterfall rate.  相似文献   

4.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

5.
亚热带两种森林土壤担子菌漆酶基因多样性比较   总被引:1,自引:0,他引:1  
Chen XB  Su YR  He XY  Hu LN  Liang YM  Feng SZ  Ge YH  Xiao W 《应用生态学报》2011,22(10):2699-2704
漆酶是降解森林凋落物中木质素的关键酶之一,直接影响着森林生态系统碳循环过程.运用TA克隆、测序技术,研究了两种亚热带森林(原生常绿落叶阔叶混交林和人工马尾松林)凋落物层(O层)和土壤表层(A层,0~20 cm)降解木质素的担子菌漆酶基因多样性.结果表明:同一土壤层位,原生林土壤中担子菌漆酶基因多样性和种群丰富度高于马尾松林;同一森林生态系统,原生林土壤O层中担子菌漆酶基因多样性和种群丰富度略高于土壤A层,而马尾松林则O层明显低于A层;两森林土壤具有相同含漆酶基因的担子菌优势种群,且大部分优势种群与伞菌目小菇属或侧耳属有较高的氨基酸相似性;与原生林土壤A层和马尾松林土壤O层相比,原生林土壤O层和马尾松林土壤A层中含漆酶基因的担子菌种群分布相对均匀;马尾松林O层与A层之间漆酶基因核苷酸序列的相似性较原生林土壤O层与A层之间的高.表明植被和土壤层位显著影响漆酶基因多样性和群落结构,而植被和土壤层位引起的担子菌可利用底物和土壤pH值的差异可能直接驱动这种影响.  相似文献   

6.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

7.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

8.
Nitrogen (N) deposition (NDEP) drives forest carbon (C) sequestration but the size of this effect is still uncertain. In the field, an estimate of these effects can be obtained by applying mineral N fertilizers over the soil or forest canopy. A 15N label in the fertilizer can be then used to trace the movement of the added N into ecosystem pools and deduce a C effect. However, N recycling via litter decomposition provides most of the nutrition for trees, even under heavy NDEP inputs. If this recycled litter nitrogen is retained in ecosystem pools differently to added mineral N, then estimates of the effects of NDEP on the relative change in C (?C/?N) based on short‐term isotope‐labelled mineral fertilizer additions should be questioned. We used 15N labelled litter to track decomposed N in the soil system (litter, soils, microbes, and roots) over 18 months in a Sitka spruce plantation and directly compared the fate of this 15N to an equivalent amount in simulated NDEP treatments. By the end of the experiment, three times as much 15N was retained in the O and A soil layers when N was derived from litter decomposition than from mineral N additions (60% and 20%, respectively), primarily because of increased recovery in the O layer. Roots expressed slightly more 15N tracer from litter decomposition than from simulated mineral NDEP (7.5% and 4.5%) and compared to soil recovery, expressed proportionally more 15N in the A layer than the O layer, potentially indicating uptake of organic N from decomposition. These results suggest effects of NDEP on forest ?C/?N may not be apparent from mineral 15N tracer experiments alone. Given the importance of N recycling, an important but underestimated effect of NDEP is its influence on the rate of N release from litter.  相似文献   

9.
Over the past decades, the tropical mountain rainforest of southern Ecuador has been threatened by conversion to cattle pastures. Frequently, these pastures are invaded by bracken fern and abandoned when bracken becomes dominant. Changes in land-use (forest–pasture–abandoned pasture) can affect soil microorganisms and their physiological responses with respect to soil carbon and nutrient cycling. In situ investigations on litter decomposition and soil respiration as well as biogeochemical characterization of the soil were carried out to identify the driving factors behind. The conversion of forest to pasture induced a pronounced increase in CO2–C effluxes to 12.2 Mg ha?1 a?1 which did not decrease after abandonment. Soil microbial activity and biomass showed a different pattern with lowest values at forest and abandoned pasture sites. With 3445 mg kg?1 (0–5 cm) microbial biomass carbon (MBC by CFE-method), the active pasture had a more than three times higher value than forest and abandoned pasture, which was among the highest in tropical pasture soils. A shift in the microbial community structure (phospholipid fatty acid, PLFA) was also induced by the establishment of pasture land; the relative abundance of fungi and Gram-negative bacteria increased. PLFA fingerprints of the forest organic layer were more similar to pasture than to forest mineral soil. Chemical properties (pH value, exchangeable cations) were the main factors influencing the respective microbial structure. Bracken-invasion resulted in a decrease in the quantity and quality of above- and belowground biomass. The lower organic substance and nutrient availability induced a significant decline in microbial biomass and activity. After pasture abandonment, these differences in soil microbial function were not accompanied by pronounced shifts in the community structure and in soil pH as was shown for the conversion to pasture. A disconnection between microbial structure and function was identified. Similar soil CO2–C effluxes between active and abandoned pasture sites might be explained by an underestimation of the effluxes from the active pasture site. All measurements were carried out between grass tussocks where fine-root density was about 2.6 times lower than below tussocks. Thus, lower proportions of root respiration were expected than below tussocks. Overall, soil microorganisms responded differently to changes in land-use from forest to pasture and from pasture to abandoned pasture resulting in pronounced changes of carbon and nutrient cycling and hence of ecosystem functioning.  相似文献   

10.
Plant species effects on soil nutrient availability are relatively well documented, but the effects of species differences in litter chemistry on soil carbon cycling are less well understood, especially in the species-rich tropics. In many wet tropical forest ecosystems, leaching of dissolved organic matter (DOM) from the litter layer accounts for a significant proportion of litter mass loss during decomposition. Here we investigated how tree species differences in soluble dissolved organic C (DOC) and nutrients affected soil CO2 fluxes in laboratory incubations. We leached DOM from freshly fallen litter of six canopy tree species collected from a tropical rain forest in Costa Rica and measured C-mineralization. We found significant differences in litter solubility and nutrient availability. Following DOM additions to soil, rates of heterotrophic respiration varied by as much as an order of magnitude between species, and overall differences in total soil CO2 efflux varied by more than four-fold. Variation in the carbon: phosphorus ratio accounted for 51% of the variation in total CO2 flux between species. These results suggest that tropical tree species composition may influence soil C storage and mineralization via inter-specific variation in plant litter chemistry.  相似文献   

11.
《农业工程》2014,34(2):110-115
In most terrestrial ecosystems, the majority of aboveground net primary productivity enters the decomposition system as plant litter. The decomposition of plant litter plays a critical role in regulating build up of the forest soil organic matter, releasing of nutrients for plant growth, and influencing the carbon cycling. Soil fauna are considered to be an important factor in the acceleration litter decomposition and nutrient transformations. Mechanisms of soil faunal contribution to litter decomposition include digestion of substrates, increase of surface area through fragmentation and acceleration of microbial inoculation into litter. The Pinus koraiensis mixed broad-leaved forest is one of the typical forest vegetation types in Changbai Mountain. Previously, major studies carried here were focused on climate, soil and vegetation; however, on litter decomposition and the role of soil fauna in this forest ecosystem were limited. In this paper, we conducted a litter decomposition experiment using litterbag method to explore the contribution of soil fauna on litter decomposition and provide a scientific basis for maintaining a balanced in P. koraiensis mixed broad-leaved forest in Changbai Mountains. During 2009 and 2010, we used litterbags with different mesh sizes to examine the decomposition of two dominant tree species (P. koraiensis, Fraxinus mandshurica) in studied site. The results showed that the process of litter decomposition can be separated into two apparent stages. The initial decomposition process at former six months was slow, while accelerated the final six months. The former six months (from October 2009 to April 2010) was winter and spring. There was low temperature and almost no activity of soil fauna and microbes. The final six months (from June to October 2010), decomposition rates increased. In summer and autumn, both temperature and moisture increases, abundance of soil fauna was much than before and was most active. The remaining mass of P. koraiensis was higher than that of F. mandshurica in two mesh size litterbags after 1 year decomposition, meanwhile litter in 2 mm mesh size litterbag had higher decomposition rate than that of 0.01 mm for two species litter. The Collembola, Acari, Enchytraeidae Lithobiomorpha and Diptera larvae were mainly fauna groups in the litterbags. The composition of soil fauna community was difference between P. koraiensis and F. mandshurica during litter decomposition. 24 different soil fauna groups and 1431 individual were obtained in P. koraiensis litterbags; Isotomidae, Tomoceridae and Oribatida were dominant groups; while 31 different soil fauna groups and 1255 individual were obtained in F. mandshurica litterbags; Isotomidae, Hypogastruridae Oribatida and Mesostigmata were dominant groups. The rate of litter decomposition was positively correlated with the individual and group density of soil fauna. Contribution rate to litter decomposition was 1.70% for P. koraiensis and 4.83% for F. mandshurica. Repeated measures ANOVA showed that litter species, time and soil fauna had a significant impact on the rate of litter decomposition (P < 0.05). Our results suggested that soil fauna could accelerate litter decomposition and, consequently, nutrient cycling in P. koraiensis mixed broad-leaved forest, Changbai Mountains.  相似文献   

12.
Empirical and modeling studies have shown that the magnitude and duration of the primary production response to elevated carbon dioxide (CO2) can be constrained by limiting supplies of soil nitrogen (N). We have studied the response of a southern US pine forest to elevated CO2 for 5 years (1997–2001). Net primary production has increased significantly under elevated CO2. We hypothesized that the increase in carbon (C) fluxes to the microbial community under elevated CO2 would increase the rate of N immobilization over mineralization. We tested this hypothesis by quantifying the pool sizes and fluxes of inorganic and organic N in the forest floor and top 30 cm of mineral soil during the first 5 years of CO2 fumigation. We observed no statistically significant change in the gross or net rate of inorganic N mineralization and immobilization in any soil horizon under elevated CO2. Similarly, elevated CO2 had no statistically significant effect on the concentration or flux of organic N, including amino acids. Microbial biomass N was not significantly different between CO2 treatments. Thus, we reject our hypothesis that elevated CO2 increases the rate of N immobilization. The quantity and chemistry of the litter inputs to the forest floor and mineral soil horizons can explain the limited range of microbially mediated soil–N cycling responses observed in this ecosystem. Nevertheless a comparative analysis of ecosystem development at this site and other loblolly pine forests suggests that rapid stand development and C sequestration under elevated CO2 may be possible only in the early stages of stand development, prior to the onset of acute N limitation.  相似文献   

13.
三种温带森林大型土壤动物群落结构的时空动态   总被引:1,自引:0,他引:1  
李娜  张雪萍  张利敏 《生态学报》2013,33(19):6236-6245
对帽儿山3种典型森林群落大型土壤动物进行了连续6个月的野外调查研究。通过系统分析,共获得大型土壤动物3604只,隶属于3门6纲17目50科。其中正蚓科(Lumbricidae)、线蚓科(Enchytraeidae)和石蜈蚣目(Lithobiomorpha)为优势类群,常见类群11类。结果表明:(1)水平分布上,密度和生物量红松人工林最高,其次为硬阔叶林,蒙古栎林最少;类群数硬阔叶林最多,蒙古栎林最少;香农指数和丰富度指数均为蒙古栎林最高,红松人工林最低;优势度指数与两者相反;均匀度指数蒙古栎林最高,硬阔叶林最低;(2)垂直分布上,个体密度、类群数及生物量均差异显著(P < 0.001)。3个样地大型土壤动物个体密度表聚性明显;类群数红松人工林自凋落物层向下减少,硬阔叶林和蒙古栎林0-10 cm最多;生物量在0-10 cm土层最大;香农指数随深度增加而减小,优势度指数则相反;(3)在时间变化上,5月和10月个体密度和类群数较多,9月生物量最大;香农指数和优势度指数差异显著(P < 0.01),其他指数各月间无明显差异;(4)与土壤环境因子关系上,总有机碳含量与类群数、个体密度及生物量显著正相关,容重与香农指数显著负相关;典型对应分析结果表明,不同类群大型土壤动物与环境相关性不同。  相似文献   

14.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

15.
Burgess  D.  Baldock  J. A.  Wetzell  S.  Brand  D. G. 《Plant and Soil》1995,(1):513-522
The influences of soil surface modification (blade scarification and plastic mulching), fertilization and herbicide application on soil nutrient and organic carbon content and tree growth and foliar nutrient status were examined after seven years in a study located within the Great Lakes-St. Lawrence forest region of Canada. Plots had been planted with white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) seedlings. Light (PAR), soil moisture and temperature were monitored and recorded throughout the growing season. Forest floor and soil mineral (0–20 cm layer) samples were collected from all experimental plots, except those which had plastic mulching. Foliar samples were collected in autumn and analysed for N, P and K and storage compounds. Seedling mortality was 20% higher in unscarified plots. Combined silvicultural treatments increased productivity as much as 14 times, but scarification reduced soil carbon and nutrient capital 2–3 fold. Herbicide application reduced soil carbon by at least 20 %. Foliar nutrient, protein, starch and lipid contents in autumn were little affected by treatment. The future management of such stands in Canada probably will include more shelterwood harvesting and crop rotations, silvicultural systems that are more closely aligned with natural forest succession.  相似文献   

16.
Forest productivity depends on nutrient supply, and sustained increases in forest productivity under elevated carbon dioxide (CO2) may ultimately depend on the response of microbial communities to changes in the quantity and chemistry of plant-derived substrates, We investigated microbial responses to elevated CO2 in a warm-temperate forest under free-air CO2 enrichment for 5 years (1997–2001). The experiment was conducted on three 30 m diameter plots under ambient CO2 and three plots under elevated CO2 (200 ppm above ambient). To understand how microbial processes changed under elevated CO2, we assayed the activity of nine extracellular enzymes responsible for the decomposition of labile and recalcitrant carbon (C) substrates and the release of nitrogen (N) and phosphorus (P) from soil organic matter. Enzyme activities were measured three times per year in a surface organic horizon and in the top 15 cm of mineral soil. Initially, we found significant increases in the decomposition of labile C substrates in the mineral soil horizon under elevated CO2; this overall pattern was present but much weaker in the O horizon. Beginning in the 4th year of this study, enzyme activities in the O horizon declined under elevated CO2, whereas they continued to be stimulated in the mineral soil horizon. By year 5, the degradation of recalcitrant C substrates in mineral soils was significantly higher under elevated CO2. Although there was little direct effect of elevated CO2 on the activity of N- and P-releasing enzymes, the activity of nutrient-releasing enzymes relative to those responsible for C metabolism suggest that nutrient limitation is increasingly regulating microbial activity in the O horizon. Our results show that the metabolism of microbial communities is significantly altered by the response of primary producers to elevated CO2. We hypothesize that ecosystem responses to elevated CO2 are shifting from primary production to decomposition as a result of increasing nutrient limitation.  相似文献   

17.
The impact of atmospheric N deposition on the dynamics of various carbon fractions was investigated in two Scots pine forest soils (cambisol, podzol) of Northern Germany in microcosm experiments. Total organic carbon (TOC), CO2 emission, microbial carbon (Cmic) as well as organic hot- and coldwater extractable carbon fractions (Chwe, Ccwe) were analyzed before, during, and after soil incubation in microcosms, run in three treatments: 0, +45, and +90 kg N ha−1a−1. On both sites, the N treatment showed no response to total organic carbon (TOC) contents in most of the investigated soil layers. Microbial carbon (Cmic) was significantly increased in the organic layer of both soil types by the N application. Subsequent to the N application, the CO2 emission increased in all mineral soil layers of the cambisol but remained almost unaffected in the podzol. After the N application, a remarkable increase of hotwater extractable C (Chwe) was detected for the organic layer of the cambisol but not for the podzol, whereas coldwater extractable C (Ccwe) concentrations decreased at both sites. The N application did not have a significant impact on the leachate concentrations of total organic carbon (TOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) in the podzol, whereas the concentrations of these C fractions were decreased in the organic layer and the 35–70~cm mineral soil layer of the cambisol. The N treatment changed the contents of most of the investigated C fractions in both soil types and resulted in a considerable C~mobilization. But the processes of the C~mobilization between the cambisol and the podzol were completely different. According to the presented data, the cambisol obtaining moderate atmospheric N loads is much more sensitive to additional N inputs than the podzol that already received high amounts of atmospheric N.  相似文献   

18.
Understanding soil carbon fractions and their responses to the global warming is important for improving soil carbon management of natural altitudinal forest ecosystem. In this study, the contents of soil total organic carbon (SOC), soil labile organic carbon (LOC), and microbial biomass carbon (MBC) in soil upper layers (0–20 cm) were measured along a natural altitudinal transect in the north slope of Changbai Mountain. The results showed that under natural conditions the contents of SOC and LOC were largest in Betula ermanii forest (altitude 1996 m), moderate in spruce-fir forest (altitude 1350 m), and smallest in Korean pine mixed broad-leaf tree forest (altitude 740 m). MBC contents in different forest ecosystems decreased in the order of Betula ermanii forest, Korean pine mixed broad-leaf tree forest, and dark coniferous forest. In addition, the responses of SOC, LOC, and MBC to soil warming were conducted by relocating intact soil cores from high- to low-elevation forests for one year. As expected, the soil core relocation caused significant increase in soil temperature but made no significant effect on soil moisture. After one year incubation, soil relocation significantly decreased SOC contents, whereas the contents of LOC, MBC, and the ratios of LOC to SOC and MBC to SOC increased.  相似文献   

19.
孙轲  黎建强  杨关吕  左嫚  胡景 《生态学报》2021,41(8):3100-3110
为了更好地理解土壤碳氮对枯落物输入变化的响应,通过枯落物添加与去除实验(DIRT)对滇中高原云南松林枯落物输入变化对土壤碳氮储量及其分布格局的影响进行了研究。2018年3月至2019年2月分别设置6种枯落物输处理,分别为对照(CO)、去除枯落物(NL)、双倍枯落物(DL)、去除根系(NR)、无输入(NI)以及去除有机层与A层(O/A-Less),研究了不同处理条件下土壤剖面上碳氮储量的分布规律。研究结果表明:(1)不同处理全碳储量为134.49-170.92 t/hm2,全碳储量在不同处理间表现为:SC(NL)=170.92 t/hm2 > SC(CO)=168.10 t/hm2 > SC(NR)=153.26 t/hm2 > SC(NI)=147.20 t/hm2 > SC(O/A-Less)=143.54 t/hm2 > SC(DL)=134.49 t/hm2,不同处理0-20 cm土层全碳储量占0-60 cm土层全碳储量的40.86%-53.56%;不同处理全氮储量表现为:SN(CO)=11.83 t/hm2 > SN(NL)=9.70 t/hm2 > SN(DL)=8.70 t/hm2 > SN(NR)=8.35 t/hm2 > SN(O/A-Less)=8.21 t/hm2 > SN(NI)=8.09 t/hm2。不同处理0-20 cm土层的全氮储量占0-60 cm土层全氮储量的39.28%-46.04%。云南松林地枯落物添加去除实验发现去除枯落物短期内可以增加土壤碳储量,其他处理均在一定程度上减少了土壤碳氮储量。(2)地上枯落物输入对表层(0-20 cm)土壤碳氮影响显著,根系输入对深层(20-40 cm)土壤碳氮影响显著;(3)土壤C、N存在耦合关系,不同处理土壤全碳含量与全氮含量极显著正相关,并且土壤全碳含量与土壤各化学计量比均呈极显著正相关关系;土壤容重与土壤碳氮含量具有极显著负相关关系。  相似文献   

20.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号