首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry.  相似文献   

2.
Merino EJ  Barton JK 《Biochemistry》2007,46(10):2805-2811
Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mitochondrial DNA through photoreactions with a rhodium intercalator. The complex [Rh(phi)2bpy]Cl3 (phi = 9,10-phenanthrenequinone diimine) binds to DNA without sequence specificity and, upon photoactivation, either promotes strand breaks directly at the binding site or promotes one-electron oxidative damage; comparing the sites of base oxidation to direct strand breaks reveals the oxidative damage that arises from a distance through DNA-mediated charge transport. Significantly, base oxidation by charge transport overlaps with known mutational hot spots associated with cancers at nucleotides surrounding positions 263 and 303; the latter is known as conserved sequence block II and is vital to DNA replication. Since DNA base oxidation at conserved sequence block II should weaken the ability of damaged mitochondrial genomes to be replicated, DNA-mediated charge transport may provide a protection mechanism for excluding damaged DNA.  相似文献   

3.
Electrochemical DNA-based sensors that exploit the inherent sensitivity of DNA-mediated charge transport (CT) to base pair stacking perturbations are capable of detecting base pair mismatches and some common base damage products. Here, using DNA-modified gold electrodes, monitoring the electrocatalytic reduction of DNA-bound methylene blue, we examine a wide range of base analogues and DNA damage products. Among those detected are base damage products O4-methyl-thymine, O6-methyl-guanine, 8-oxo-guanine, and 5-hydroxy-cytosine, as well as a therapeutic base, nebularine. The efficiency of DNA-mediated CT is found not to depend on the thermodynamic stability of the helix. However, general trends in how base modifications affect CT efficiency are apparent. Modifications to the hydrogen bonding interface in Watson-Crick base pairs yields a substantial loss in CT efficiency, as does added steric bulk. Base structure modifications that may induce base conformational changes also appear to attenuate CT in DNA as do those that bury hydrophilic groups within the DNA helix. Addition and subtraction of methyl groups that do not disrupt hydrogen bonding interactions do not have a large effect on CT efficiency. This sensitive detection methodology based upon DNA-mediated CT may have utility in diagnostic applications and implicates DNA-mediated CT as a possible damage detection mechanism for DNA repair enzymes.  相似文献   

4.
5.
Charge transport through DNA four-way junctions   总被引:1,自引:1,他引:0       下载免费PDF全文
Long range oxidative damage as a result of charge transport is shown to occur through single crossover junctions assembled from four semi-complementary strands of DNA. When a rhodium complex is tethered to one of the arms of the four-way junction assembly, thereby restricting its intercalation into the π-stack, photo-induced oxidative damage occurs to varying degrees at all guanine doublets in the assembly, though direct strand scission only occurs at the predicted site of intercalation. In studies where the Mg2+ concentration was varied, so as to perturb base stacking at the junction, charge transport was found to be enhanced but not to be strongly localized to the arms that preferentially stack on each other. These data suggest that the conformations of four-way junctions can be relatively mobile. Certainly, in four-way junctions charge transport is less discriminate than in the more rigidly stacked DNA double crossover assemblies.  相似文献   

6.
Delaney S  Barton JK 《Biochemistry》2003,42(48):14159-14165
DNA conjugates containing adjacent duplex and guanine quadruplex assemblies have been designed to explore charge transport into quadruplex architectures. The quadruplex assemblies have been characterized structurally using circular dichroism and by assaying for chemical protection. Using an intercalating rhodium photooxidant, noncovalently bound or tethered to the duplex end, oxidizing radicals are found to be trapped in the folded quadruplex. Damage is observed almost exclusively at the external tetrads of the quadruplex. Little damage of the center tetrad is observed, due most likely to lowered efficiency of radical trapping within the quadruplex core. This pattern of damage is distinct from that observed for repetitive G sequences within duplex DNA. The data indicate, furthermore, that in the conjugates examined, the guanine quadruplex provides a more effective trap than a 5'-GG-3' guanine doublet within duplex DNA. Within these assemblies, sufficient base-base overlap must exist at the duplex/quadruplex junction to allow for charge migration. This funneling of damage to the quadruplex, as well as the unique pattern of damage within the quadruplex, requires consideration with respect to the analysis of oxidative DNA damage within the cell.  相似文献   

7.
Naphthalene diimide (NDI), a powerful oxidant that binds avidly to DNA by intercalation, is seen to damage the 5' guanine of 5'-GG-3' sites by photoactivated charge transport through DNA. When covalently tethered to the center of a triplex-forming oligonucleotide and delivered by triplex formation within a pyrimidine.purine-pyrimidine motif to a specific site on a restriction fragment, NDI can photooxidize guanine over at least 25-38 bp in each direction from the site of binding. Charge migration occurs in both directions from the NDI intercalator and on both DNA strands of the target, but the oxidation is significantly more efficient to the 3' side of the triplex. NDI and octahedral rhodium intercalators, when tethered directly to the 5' terminus of the triplex-forming strand as opposed to the center, generate significant amounts of oxidative damage only in the immediate vicinity of the intercalation site. Given that long-range charge transport depends on DNA stacking, these results suggest that the base stack is distorted at the 5' end of the triplex region in the duplex-triplex junction. Targeting of photooxidative damage by triplex formation extends our previous studies of long-range charge transport to significantly longer DNA sequences through a strategy that does not require covalent attachment of the photooxidant to the DNA being probed. Moreover, triplex targeting of oxidative damage provides for the first time a typical distance distribution for genomic charge transport of approximately 200 A around the oxidant.  相似文献   

8.
A wide range of experiments have emerged recently regarding charge transport through DNA, including spectroscopic studies of rates of DNA-mediated electron transfer and biochemical studies of DNA base oxidation over long distances. These experiments have, in turn, led to new proposals about the way in which charge moves through DNA and have prompted the consideration of physiological roles for DNA electron transfer. Importantly, metallointercalators have been key players in many of these experiments. Metallointercalators provide critical probes to examine the migration of charge through the DNA base stack.  相似文献   

9.
10.
Merino EJ  Barton JK 《Biochemistry》2008,47(6):1511-1517
Sites of oxidative DNA damage in functioning mitochondria have been identified using a rhodium photooxidant as a probe. Here we show that a primer extension reaction can be used to monitor oxidative DNA damage directly in functioning mitochondria after photoreaction with a rhodium intercalator that penetrates the intact mitochondrial membrane. The complex [Rh(phi)2bpy]Cl3 (phi = 9,10-phenanthrenequinonediimine) binds to DNA within the mitochondria and, upon irradiation, initiates DNA oxidation reactions. Significantly, piperidine treatment of the mitochondria leads to protein-dependent primer extension stops spaced every approximately 20 base pairs. Hence, within the mitochondria, the DNA is well covered and packaged by proteins. Photolysis of the mitochondria containing [Rh(phi)2bpy]3+ leads to oxidative DNA damage at positions 260 and 298; both are mutational hot spots associated with cancers. The latter position is the 5'-nucleotide of conserved sequence block II and is critical to replication of the mitochondrial DNA. The oxidative damage is found to be DNA-mediated, utilizing a charge transport mechanism, as the Rh binding sites are spatially separated from the oxidation-prone regions. This long-range DNA-mediated oxidation occurs despite protein association. Indeed, the oxidation of the mitochondrial DNA leads not only to specific oxidative lesions, but also to a corresponding change in the protein-induced stops in the primer extension. Mitochondrial DNA damage promotes specific changes in protein-DNA contacts and is thus sensed by the mitochondrial protein machinery.  相似文献   

11.
High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces display a marked sensitivity to the presence of base mismatches within the immobilized duplexes. Differential mismatch detection was accomplished irrespective of DNA sequence composition and mismatch identity. Single-base changes in sequences hybridized at the electrode surface are also detected accurately. Coupling the redox reactions of intercalated species to electrocatalytic processes in solution considerably increases the sensitivity of this assay. Reporting on the electronic structure of DNA, as opposed to the hybridization energetics of single-stranded oligonucleotides, electrochemical sensors based on charge transport may offer fundamental advantages in both scope and sensitivity.  相似文献   

12.
The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts ~146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the DNA TG-motif, a strong NCP positioning sequence and a covalently attached Anthraquinone photooxidant. Following a thorough biophysical characterization of the structure of AQ-157TG NCPs by Exonuclease III and hydroxyl radical footprinting, we compared the dynamics of DNA charge transport in ultraviolet-irradiated free and NCP-incorporated AQ-157TG. Compaction into a NCP changes the charge transport dynamics in AQ-157TG drastically. Not only is the overall yield of oxidative lesions decreased in the NCPs, but the preferred sites of oxidative damage change as well. This NCP-dependent attenuation of DNA charge transport is attributed to DNA–protein interactions involving the folded histone core since removal of the histone tails did not perturb the charge transport dynamics in AQ-157TG NCPs.  相似文献   

13.
Changes in the oxidation state of the DNA bases, induced by oxidation (ionization) or by reduction (electron capture), have drastic effects on the acidity or basicity, respectively, of the molecules. Since in DNA every base is connected to its complementary base in the other strand, any change of the electric charge status of a base in one DNA strand that accompanies its oxidation or reduction may affect also the other strand via proton transfer across the hydrogen bonds in the base pairs. The free energies for electron transfer to or from a base can be drastically altered by the proton transfer processes that accompany the electron transfer reactions. Electron-transfer (ET) induced proton transfer sensitizes the base opposite to the ET-damaged base to redox damage, i.e., damage produced by separation of charge (ionization) has an increased change of being trapped in a base pair. Of the two types of base pair in DNA, A-T and C-G, the latter is more sensitive to both oxidative and reductive processes than the former.

Proton transfer induced by ET does not only occur between the heteroatoms (o and N) of the base pairs (intra-pair proton transfer), but also to and from adjacent water molecules in the hydration shell of DNA (extra-pair proton transfer). These proton transfers can involve carbon and as such are likely to be irreversible. It is the A-T pair which appears to be particularly prone to such irreversible reactions.  相似文献   

14.
The mechanism and dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing a stilbenedicarboxamide linker and a single guanine-cytosine base pair have been reinvestigated. The combination of femtosecond broad-band pump probe spectroscopy, nanosecond transient absorption experiments, and picosecond fluorescence decay measurements permits analysis of the formation and decay of the stilbene anion radical. Reversible hole injection resulting in the formation of the stilbene-adenine contact radical ion pair is found to occur on the picosecond time scale. The mechanism for charge separation across two or more base pairs is revised from single step superexchange to a multi-step process: hole injection followed by hole transport and hole trapping. The mechanism of charge recombination remains assigned to a superexchange process.  相似文献   

15.
Biological contexts for DNA charge transport chemistry   总被引:1,自引:0,他引:1  
  相似文献   

16.
Tomato consumption modulates oxidative DNA damage in humans.   总被引:3,自引:0,他引:3  
Consumption of a single serving of tomatoes by healthy human volunteers was sufficient to alter levels of oxidative DNA base damage in white cell DNA within 24 h. Levels of the mutagenic oxidized purine base 8-hydroxyguanine decreased, especially in those subjects whose initial levels of this base were higher than the mean. However, total DNA base damage remained unchanged since levels of 8-hydroxyadenine rose. The ability of tomato consumption to modulate oxidative DNA damage in the short term may indicate why daily consumption of fruits and vegetables is beneficial in decreasing cancer incidence.  相似文献   

17.
A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.  相似文献   

18.
Systems containing a base or a base pair and 25 water molecules, as well as a helical stack and 30 water molecules per base pair, have been simulated. Changes in the base hydration shell structure, after the bases have been included into the pair and then into the base pair stack, are discussed. Hydration shells of several configurations of the base pair stacks are discussed. Probabilities of formation of the hydrogen-bonded bridges of 1, 2 and 3 water molecules between hydrophilic centres have been estimated. The hydration shell structure was shown to depend on the nature of the base pair and on the stack configuration, while dependence of the global hydration shell characteristics on the stack configuration has been proved to be rather slight. The most typical structural elements of hydration shells, in the glycosidic (minor in B-like conformation) and non-glycosidic (major) grooves, for different configurations of AU and GC stacks, have been found and discussed. The number of hydrogen bonds between water molecules and bases per water molecule was shown to change upon transformation of the stack from A to B configuration. This result is discussed in connection with the reasons for B to A conformational transition and the concept of "water economy". Hydration shell patterns of NH2-groups of AU and GC helical stacks differ significantly.  相似文献   

19.
20.
Molecular mechanisms of DNA damage and repair: progress in plants   总被引:14,自引:0,他引:14  
Despite stable genomes of all living organisms, they are subject to damage by chemical and physical agents in the environment (e.g., UV and ionizing. radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. The DNA lesions produced by these damaging agents could be altered base, missing base, mismatch base, deletion or insertion, linked pyrimidines, strand breaks, intra- and inter-strand cross-links. These DNA lesions could be genotoxic or cytotoxic to the cell. Plants are most affected by the UV-B radiation of sunlight, which penetrates and damages their genome by inducing oxidative damage (pyrimidine hydrates) and cross-links (both DNA protein and DNA-DNA) that are responsible for retarding the growth and development. The DNA lesions can be removed by repair, replaced by recombination, or retained, leading to genome instability or mutations or carcinogenesis or cell death. Mostly organisms respond to genome damage by activating a DNA damage response pathway that regulates cell-cycle arrest, apoptosis, and DNA repair pathways. To prevent the harmful effect of DNA damage and maintain the genome integrity, all organisms have developed various strategies to either reverse, excise, or tolerate the persistence of DNA damage products by generating a network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. The direct reversal and photoreactivation require single protein, all the rest of the repair mechanisms utilize multiple proteins to remove or repair the lesions. The base excision repair pathway eliminates single damaged base, while nucleotide excision repair excises a patch of 25- to 32-nucleotide-long oligomer, including the damage. The double-strand break repair utilizes either homologous recombination or nonhomologous endjoining. In plant the latter pathway is more error prone than in other eukaryotes, which could be an important driving force in plant genome evolution. The Arabidopsis genome data indicated that the DNA repair is highly conserved between plants and mammals than within the animal kingdom, perhaps reflecting common factors such as DNA methylation. This review describes all the possible mechanisms of DNA damage and repair in general and an up to date progress in plants. In addition, various types of DNA damage products, free radical production, lipid peroxidation, role of ozone, dessication damage of plant seed, DNA integrity in pollen, and the role of DNA helicases in damage and repair and the repair genes in Arabidopsis genome are also covered in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号