首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogenesis of peroxisomes requires the interaction of several peroxins, encoded by PEX genes and is well conserved between yeast and humans. We have cloned the human cDNA of PEX3 based on its homology to different yeast PEX3 genes. The deduced peroxin HsPEX3 is a peroxisomal membrane protein with a calculated molecular mass of 42.1 kDa. We created N- and C-terminal tagged PEX3 to assay its topology at the peroxisomal membrane by immunofluorescence microscopy. Our results and the one predicted transmembrane spanning region are in line with the assumption that H sPEX3 is an integral peroxisomal membrane protein with the N-terminus inside the peroxisome and the C-terminus facing the cytoplasm. The farnesylated peroxisomal membrane protein PEX19 interacts with HsPEX3 in a mammalian two-hybrid assay in human fibroblasts. The physical interaction could be confirmed by coimmunoprecipitation of the two in vitro transcribed and translated proteins. To address the targeting of PEX3 to the peroxisomal membrane, the expression of different N- and C-terminal PEX3 truncations fused to green fluorescent protein (GFP) was investigated in human fibroblasts. The N-terminal 33 amino acids of PEX3 were necessary and sufficient to direct the reporter protein GFP to peroxisomes and seemed to be integrated into the peroxisomal membrane. The expression of a 1-16 PEX3-GFP fusion protein did not result in a peroxisomal localization, but interestingly, this and several other truncated PEX3 fusion proteins were also localized to tubular and/or vesicular structures representing mitochondria.  相似文献   

2.
In yeasts, the peroxin Pex3p was identified as a peroxisomal integral membrane protein that presumably plays a role in the early steps of peroxisomal assembly. In humans, defects of peroxins cause peroxisomal biogenesis disorders such as Zellweger syndrome. We previously reported data on the human PEX3 cDNA and its protein, which in addition to the peroxisomal targeting sequence contains a putative endoplasmic reticulum targeting signal. Here we report the genomic organization, sequencing of the putative promoter region, chromosomal localization, and physical mapping of the human PEX3 gene. The gene is composed of 12 exons and 11 introns spanning a region of approximately 40 kb. The highly conserved putative promoter region is very GC rich, lacks typical TATA and CCAAT boxes, and contains potential Sp1, AP1, and AP2 binding sites. The gene was localized to chromosome 6q23-24 and D6S279 was identified to be the closest positional marker. As yeast mutants deficient in PEX3 have been shown to lack peroxisomes as well as any peroxisomal remnant structures, human PEX3 is a candidate gene for peroxisomal assembly disorders. Mutation analysis of the human PEX3 gene was therefore performed in fibroblasts from patients suffering from peroxisome biogenesis disorders. Complementation groups 1, 4, 7, 8, and 9 according to the numbering system of Kennedy Krieger Institute were analyzed but no difference to the wild-type sequence was detected. PEX3 mutations were therefore excluded as the molecular basis of the peroxisomal defect in these complementation groups.  相似文献   

3.
Glycosomes are divergent peroxisomes found in trypanosomatid protozoa, including those that cause severe human diseases throughout much of the world. While peroxisomes are dispensable for both yeast (Saccharomyces cerevisiae and others) and mammalian cells in vitro, glycosomes are essential for trypanosomes and hence are viewed as a potential drug target. The import of proteins into the matrix of peroxisomes utilizes multiple peroxisomal membrane proteins which require the peroxin PEX19 for insertion into the peroxisomal membrane. In this report, we show that the specificity of peroxisomal membrane protein binding for Trypanosoma brucei PEX19 is very similar to those previously identified for human and yeast PEX19. Our studies show that trafficking is conserved across these distant phyla and that both a PEX19 binding site and a transmembrane domain are required for the insertion of two test proteins into the glycosomal membrane. However, in contrast to T. brucei PEX10 and PEX12, T. brucei PEX14 does not traffic to human peroxisomes, indicating that it is not recognized by the human PEX14 import mechanism.  相似文献   

4.
Carnitine is a zwitterion essential for the beta-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (Km 20 microM), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.  相似文献   

5.
6.
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.  相似文献   

7.
Mulibrey nanism is an autosomal recessive prenatal-onset growth disorder characterized by dysmorphic features, cardiomyopathy, and hepatomegaly. Mutations in TRIM37 encoding a tripartite motif (TRIM, RING-B-box-coiled-coil)-family protein underlie mulibrey nanism. We investigated the ubiquitin ligase activity predicted for the RING domain of TRIM37 by analyzing its autoubiquitination. Full-length TRIM37 and its TRIM domain were highly polyubiquitinated when co-expressed with ubiquitin. Polyubiquitination was decreased in a mutant protein with disrupted RING domain (Cys35Ser;Cys36Ser) and in the Leu76Pro mutant protein, a disease-associated missense mutation affecting the TRIM domain of TRIM37. Bacterially produced GST-TRIM domain fusion protein, but not its Cys35Ser;Cys36Ser or Leu76Pro mutants, were polyubiquitinated in cell-free conditions, implying RING-dependent modification. Ubiquitin was also identified as an interaction partner for TRIM37 in a yeast two-hybrid screen. Ectopically expressed TRIM37 rapidly formed aggregates that were ubiquitin-, proteasome subunit-, and chaperone-positive in immunofluorescence analysis, defining them as aggresomes. The Cys35Ser;Cys36Ser mutant and the Leu76Pro and Gly322Val patient mutant proteins were markedly less prone to aggregation, implying that aggresomal targeting reflects a physiological function of TRIM37. These findings suggest that TRIM37 acts as a TRIM domain-dependent E3 ubiquitin ligase and imply defective ubiquitin-dependent degradation of an as-yet-unidentified target protein in the pathogenesis of mulibrey nanism.  相似文献   

8.

Background

Can sequence segments coding for subcellular targeting or for posttranslational modifications occur in proteins that are not substrates in either of these processes? Although considerable effort has been invested in achieving low false-positive prediction rates, even accurate sequence-analysis tools for the recognition of these motifs generate a small but noticeable number of protein hits that lack the appropriate biological context but cannot be rationalized as false positives.

Results

We show that the carboxyl termini of a set of definitely non-peroxisomal proteins with predicted peroxisomal targeting signals interact with the peroxisomal matrix protein receptor peroxin 5 (PEX5) in a yeast two-hybrid test. Moreover, we show that examples of these proteins - chicken lysozyme, human tyrosinase and the yeast mitochondrial ribosomal protein L2 (encoded by MRP7) - are imported into peroxisomes in vivo if their original sorting signals are disguised. We also show that even prokaryotic proteins can contain peroxisomal targeting sequences.

Conclusions

Thus, functional localization signals can evolve in unrelated protein sequences as a result of neutral mutations, and subcellular targeting is hierarchically organized, with signal accessibility playing a decisive role. The occurrence of silent functional motifs in unrelated proteins is important for the development of sequence-based function prediction tools and the interpretation of their results. Silent functional signals have the potential to acquire importance in future evolutionary scenarios and in pathological conditions.  相似文献   

9.
Peroxins are proteins required for peroxisome assembly and are encoded by the PEX genes. Functional complementation of the oleic acid-nonutilizing strain mut1-1 of the yeast Yarrowia lipolytica has identified the novel gene, PEX24. PEX24 encodes Pex24p, a protein of 550 amino acids (61,100 Da). Pex24p is an integral membrane protein of peroxisomes that exhibits high sequence homology to two hypothetical proteins encoded by the open reading frames YHR150W and YDR479C of the Saccharomyces cerevisiae genome. Pex24p is detectable in wild-type cells grown in glucose-containing medium, and its levels are significantly increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex24 mutants are compromised in the targeting of both matrix and membrane proteins to peroxisomes. Although pex24 mutants fail to assemble functional peroxisomes, they do harbor membrane structures that contain subsets of peroxisomal proteins.  相似文献   

10.
Peroxisomes are multipurpose organelles present in nearly all eukaryotic cells. All peroxisomale matrix and membrane proteins are synthesized in the cytoplasm. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are poorly understood. The 70-kDa peroxisomal integral membrane protein (PMP70) is one of the proteins located in the human peroxisome membrane. PMP70 belongs to the family of ATP-binding cassette (ABC) transporter proteins. It consists of six transmembrane domains and an ATP-binding fold in the cytosol. Here we describe that efficient peroxisomal targeting of human PMP70 depends on three targeting elements in the amino-terminal protein region, namely amino acids 61 to 80 located in the cytosol as well as the first and second transmembrane domains. Furthermore, peroxin 19 (PEX19) interactions are not required for targeting human PMP70 to peroxisomes. PEX19 does not specifically bind to the targeting elements of human PMP70.  相似文献   

11.
Peroxisome-biogenesis disorders (PBDs), including Zellweger syndrome (ZS), are autosomal recessive diseases caused by a deficiency in peroxisome assembly as well as by a malfunction of peroxisomes, among which>10 genotypes have been identified. We have isolated a human PEX16 cDNA (HsPEX16) by performing an expressed-sequence-tag homology search on a human DNA database, by using yeast PEX16 from Yarrowia lipolytica and then screening the human liver cDNA library. This cDNA encodes a peroxisomal protein (a peroxin Pex16p) made up of 336 amino acids. Among 13 peroxisome-deficiency complementation groups (CGs), HsPEX16 expression morphologically and biochemically restored peroxisome biogenesis only in fibroblasts from a CG-D patient with ZS in Japan (the same group as CG-IX in the United States). Pex16p was localized to peroxisomes through expression study of epitope-tagged Pex16p. One patient (PBDD-01) possessed a homozygous, inactivating nonsense mutation, C-->T at position 526 in a codon (CGA) for 176Arg, that resulted in a termination codon (TGA). This implies that the C-terminal half is required for the biological function of Pex16p. PBDD-01-derived PEX16 cDNA was defective in peroxisome-restoring activity when expressed in the patient's fibroblasts. These results demonstrate that mutation in PEX16 is the genetic cause of CG-D PBDs.  相似文献   

12.
Plant peroxisomal proteins catalyze key metabolic reactions. Several peroxisome biogenesis PEROXIN (PEX) genes encode proteins acting in the import of targeted proteins necessary for these processes into the peroxisomal matrix. Most peroxisomal matrix proteins bear characterized Peroxisomal Targeting Signals (PTS1 or PTS2), which are bound by the receptors PEX5 or PEX7, respectively, for import into peroxisomes. Here we describe the isolation and characterization of an Arabidopsis peroxin mutant, pex7-1, which displays peroxisome-defective phenotypes including reduced PTS2 protein import. We also demonstrate that the pex5-1 PTS1 receptor mutant, which contains a lesion in a domain conserved among PEX7-binding proteins from various organisms, is defective not in PTS1 protein import, but rather in PTS2 protein import. Combining these mutations in a pex7-1 pex5-1 double mutant abolishes detectable PTS2 protein import and yields seedlings that are entirely sucrose-dependent for establishment, suggesting a severe block in peroxisomal fatty acid beta-oxidation. Adult pex7-1 pex5-1 plants have reduced stature and bear abnormally shaped seeds, few of which are viable. The pex7-1 pex5-1 seedlings that germinate have dramatically fewer lateral roots and often display fused cotyledons, phenotypes associated with reduced auxin response. Thus PTS2-directed peroxisomal import is necessary for normal embryonic development, seedling establishment, and vegetative growth.  相似文献   

13.
Four ABC half transporters (ALDP, ALDRP, PMP70, and PMP69) have been identified in the mammalian peroxisomal membrane but no function has been unambiguously assigned to any of them. To date X-linked adrenoleukodystrophy (X-ALD) is the only human disease known to result from a defect of one of these ABC transporters, ALDP. Using the yeast two-hybrid system and in vitro GST pull-down assays, we identified the peroxin PEX19p as a novel interactor of ALDP, ALDRP, and PMP70. The cytosolic farnesylated protein PEX19p was previously shown to be involved in an early step of the peroxisomal biogenesis. The PEX19p interaction occurs in an internal N-terminal region of ALDP which we verified to be important for proper peroxisomal targeting of this protein. Farnesylated wild-type PEX19p and a farnesylation-deficient mutant PEX19p did not differ in their ability to bind to ALDP. Our data provide evidence that PEX19p is a cytosolic acceptor protein for the peroxisomal ABC transporters ALDP, PMP70, and ALDRP and might be involved in the intracellular sorting and trafficking of these proteins to the peroxisomal membrane.  相似文献   

14.
15.
16.
17.
18.
PEX19 has been shown to play a central role in the early steps of peroxisomal membrane synthesis. Computational database analysis of the PEX19 sequence revealed three different conserved domains: D1 (aa 1--87), D2 (aa 88--272), and D3 (aa 273--299). However, these domains have not yet been linked to specific biological functions. We elected to functionally characterize the proteins derived from two naturally occurring PEX19 splice variants: PEX19DeltaE2 lacking the N-terminal domain D1 and PEX19DeltaE8 lacking the domain D3. Both interact with peroxisomal ABC transporters (ALDP, ALDRP, PMP70) and with full-length PEX3 as shown by in vitro protein interaction studies. PEX19DeltaE8 also interacts with a PEX3 protein lacking the peroxisomal targeting region located at the N-terminus (Delta66aaPEX3), whereas PEX19DeltaE2 does not. Functional complementation studies in PEX19-deficient human fibroblasts revealed that transfection of PEX19DeltaE8-cDNA leads to restoration of both peroxisomal membranes and of functional peroxisomes, whereas transfection of PEX19DeltaE2-cDNA does not restore peroxisomal biogenesis. Human PEX19 is partly farnesylated in vitro and in vivo. The farnesylation consensus motif CLIM is located in the PEX19 domain D3. The finding that the protein derived from the splice variant lacking D3 is able to interact with several peroxisomal membrane proteins and to restore peroxisomal biogenesis challenges the previous assumption that farnesylation of PEX19 is essential for its biological functionality. The data presented demonstrate a considerable functional diversity of the proteins encoded by two PEX19 splice variants and thereby provide first experimental evidence for specific biological functions of the different predicted domains of the PEX19 protein.  相似文献   

19.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

20.
Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号