首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ExInt: an Exon Intron Database   总被引:5,自引:0,他引:5       下载免费PDF全文
The Exon/Intron Database (ExInt) stores information of all GenBank eukaryotic entries containing an annotated intron sequence. Data are available through a retrieval system, as flat-files and as a MySQL dump file. In this report we discuss several implementations added to ExInt, which is accessible at http://intron.bic.nus.edu.sg/exint/newexint/exint.html.  相似文献   

2.
3.
4.
More than 1200 introns have been documented at over 150 unique sites in the small and large subunit ribosomal RNA genes (as of February 2002). Nearly all of these introns are assigned to one of four main types: group I, group II, archaeal and spliceosomal. This sequence information has been organized into a relational database that is accessible through the Comparative RNA Web Site (http://www.rna.icmb.utexas.edu/) While the rRNA introns are distributed across the entire tree of life, the majority of introns occur within a few phylogenetic groups. We analyzed the distributions of rRNA introns within the three-dimensional structures of the 30S and 50S ribosomes. Most sites in rRNA genes that contain introns contain only one type of intron. While the intron insertion sites occur at many different coordinates, the majority are clustered near conserved residues that form tRNA binding sites and the subunit interface. Contrary to our expectations, many of these positions are not accessible to solvent in the mature ribosome. The correlation between the frequency of intron insertions and proximity of the insertion site to functionally important residues suggests an association between intron evolution and rRNA function.  相似文献   

5.
We present an analysis of intron positions in relation to nucleotides, amino acid residues, and protein secondary structure. Previous work has shown that intron sites in proteins are not randomly distributed with respect to secondary structures. Here we show that this preference can be almost totally explained by the nucleotide bias of splice site machinery, and may well not relate to protein stability or conformation at all. Each intron phase is preferentially associated with its own set of residues: phase 0 introns with lysine, glutamine, and glutamic acid before the intron, and valine after; phase 1 introns with glycine, alanine, valine, aspartic acid, and glutamic acid; and phase 2 introns with arginine, serine, lysine, and tryptophan. These preferences can be explained principally on the basis of nucleotide bias at intron locations, which is in accordance with previous literature. Although this work does not prove that introns are inserted into genomes at specific proto-splice sites, it shows that the nucleotide bias surrounding introns, however it originally occurred, explains the observed correlations between introns and protein secondary structure.  相似文献   

6.
MOTIVATION: Intron sliding is the relocation of intron-exon boundaries over short distances and is often also referred to as intron slippage or intron migration or intron drift. We have generated a database containing discordant intron positions in homologous genes (MIDB--Mismatched Intron DataBase). Discordant intron positions are those that are either closely located in homologous genes (within a window of 10 nucleotides) or an intron position that is present in one gene but not in any of its homologs. The MIDB database aims at systematically collecting information about mismatched introns in the genes from GenBank and organizing it into a form useful for understanding the genomics and dynamics of introns thereby helping understand the evolution of genes. RESULTS: Intron displacement or sliding is critically important for explaining the present distribution of introns among orthologous and paralogous genes. MIDB allows examining of intron movements and allows mapping of intron positions from homologous proteins onto a single sequence. The database is of potential use for molecular biologists in general and for researchers who are interested in gene evolution and eukaryotic gene structure. Partial analysis of this database allowed us to identify a few putative cases of intron sliding. AVAILABILITY: http://intron.bic.nus.edu.sg/midb/midb.html  相似文献   

7.
The oxiA gene of Aspergillus nidulans, coding for cytochrome oxidase subunit 1, is shown by DNA sequencing to contain three introns. An AUG start codon is not present at the beginning of the sequence, suggesting that either another codon, possibly the four base codon AUGA, is used for initiation or there is a further short intron between the true start codon and the beginning of the recognisable coding region. The second and third introns have long open reading frames, which could code for maturase proteins. The lack of conservation of amino acid sequence in the putative region of proteolytic cleavage for maturase formation suggests that the first conserved decapeptide may act as the recognition signal for protein processing. The third intron is remarkably (70%) homologous to the second intron of the cytochrome oxidase subunit 1 gene of Schizosaccharomyces pombe and both are located in exactly the same position. The third Aspergillus intron has an in-frame insertion of a 37-bp GC-rich DNA sequence which is now flanked by a 5-bp repeat, a well-known feature of transposable elements. All three introns in the oxiA gene have a 'core' RNA secondary structure found in a class of introns fitting the RNA splicing model of Davies et al. (1982). This core RNA structure may play a catalytic as well as a structural role in intron splicing. A sequence within the intron could act as a guide to align the splice sites of two of the introns in accordance with the model of Davies et al.  相似文献   

8.
9.
10.
11.
吡哆醛激酶(pyridoxal kinase,PLK, EC2.7.1.35)是维生素B6关键代谢酶,其cDNA的克隆在昆虫类还未见报道。利用生物信息学原理和使用PCR方法,克隆出编码家蚕Bombyx mori吡哆醛激酶的cDNA (GenBank登录号DQ452397),体外原核表达成功,并对表达粗提产物进行了酶活检测。克隆到的cDNA含有一894 bp的完整可读框,编码一条分子量为33.1 kD,含298个氨基酸残基的蛋白质。序列比对显示此蛋白质与人类吡哆醛激酶具有52.84%的同一性,包含吡哆醛激酶家族共有的特征保守序列,但比哺乳动物和植物克隆到的吡哆醛激酶均少10多个氨基酸残基,几个有关键功能且在哺乳动物和植物中均保守的氨基酸残基在此蛋白中被替换。依据家蚕基因组数据库信息和PLK的cDNA,家蚕PLK基因包含5个外显子和4个内含子,跨越10 kb DNA序列,所有外显子/内含子交接点都遵从gt/ag剪接规则,基因的5′端启动子调控区发现有TATA-box和CAAT-box保守基序。  相似文献   

12.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

13.
大豆11S球蛋白Gy5(A3B4)的基因克隆和序列分析   总被引:3,自引:0,他引:3  
大豆11S球蛋白(Glycinin)是大豆种子的主要贮藏蛋白,分子量为360kD,由6对相同的蛋白亚基(每对亚基的分子量约60kD)构成。每对亚基又是由一个酸性A肽(35~45kD)和一个碱性B肽(22kD)通过二硫键连接而成。A肽和B肽源自同一个基因,即首先由一个大的mR?..  相似文献   

14.
15.
We have identified genomic clones and corresponding cDNAs that encode a putative peroxidase of Drosophila melanogaster. The gene (DmPO) appears as a single copy gene located on the third chromosome at position 89 D/E. It is interrupted by seven small introns and one unusually large 5' intron (about 11 kb). Sequence analysis of the cDNA showed an open reading frame of 690 amino acids resulting in a protein of 77 kDa. The deduced amino acid sequence reveals an overall homology to myeloeosinophil and thyroid peroxidase, a human superfamily of peroxidases.  相似文献   

16.
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.  相似文献   

17.
18.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

19.
20.
Exon-intron structure and evolution of the Lipocalin gene family   总被引:6,自引:0,他引:6  
The Lipocalins are an ancient protein family whose expression is currently confirmed in bacteria, protoctists, plants, arthropods, and chordates. The evolution of this protein family has been assessed previously using amino acid sequence phylogenies. In this report we use an independent set of characters derived from the gene structure (exon-intron arrangement) to infer a new lipocalin phylogeny. We also present the novel gene structure of three insect lipocalins. The position and phase of introns are well preserved among lipocalin clades when mapped onto a protein sequence alignment, suggesting the homologous nature of these introns. Because of this homology, we use the intron position and phase of 23 lipocalin genes to reconstruct a phylogeny by maximum parsimony and distance methods. These phylogenies are very similar to the phylogenies derived from protein sequence. This result is confirmed by congruence analysis, and a consensus tree shows the commonalities between the two source trees. Interestingly, the intron arrangement phylogeny shows that metazoan lipocalins have more introns than other eukaryotic lipocalins, and that intron gains have occurred in the C-termini of chordate lipocalins. We also analyze the relationship of intron arrangement and protein tertiary structure, as well as the relationship of lipocalins with members of the proposed structural superfamily of calycins. Our congruence analysis validates the gene structure data as a source of phylogenetic information and helps to further refine our hypothesis on the evolutionary history of lipocalins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号