首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

2.
Mutations which allow tolerance to 5-bromo-2'-deoxyuridine (BUdR) in a thymidine (TdR)-requiring strain of Bacillus subtilis have been examined. Differences in sensitivity to BUdR existed between isogenic strains harbouring the mutations. Those mutations originally isolated as BUdR-tolerant also bestowed tolerance to 5-bromouracil and vice versa. The strain exhibiting the greatest tolerance to BUdR maintained a normal rate of replication in the presence of BUdR whereas the parent strain did not, but the tolerant strain incorporated less analogue into DNA than the parent strain. The basis of the tolerance mutation appeared to lie at the point of uptake of the analogue into the cell as the tolerant mutant preferentially took up TdR over BUdR into whole cells. DNA polymerase activity measured in vitro did not distinguish between TdR and BUdR in either the parent or the mutant strain and although TdR kinase activity showed a preference for TdR over BUdR as a substrate, the extent of discrimination was similar in both strains.  相似文献   

3.
The key processes of the bacterial cell cycle are controlled and coordinated to match cellular mass growth. We have studied the coordination between replication and cell division by using a temperature-controlled Escherichia coli intR1 strain. In this strain, the initiation time for chromosome replication can be displaced to later (underreplication) or earlier (overreplication) times in the cell cycle. We used underreplication conditions to study the response of cell division to a delayed initiation of replication. The bacteria were grown exponentially at 39°C (normal DNA/mass ratio) and shifted to 38 and 37°C. In the last two cases, new, stable, lower DNA/mass ratios were obtained. The rate of replication elongation was not affected under these conditions. At increasing degrees of underreplication, increasing proportions of the cells became elongated. Cell division took place in the middle in cells of normal size, whereas the longer cells divided at twice that size to produce one daughter cell of normal size and one three times as big. The elongated cells often produced one daughter cell lacking a chromosome; this was always the smallest daughter cells, and it was the size of a normal newborn cell. These results favor a model in which cell division takes place at only distinct cell sizes. Furthermore, the elongated cells had a lower probability of dividing than the cells of normal size, and they often contained more than two nucleoids. This suggests that for cell division to occur, not only must replication and nucleoid partitioning be completed, but also the DNA/mass ratio must be above a certain threshold value. Our data support the ideas that cell division has its own control system and that there is a checkpoint at which cell division may be abolished if previous key cell cycle processes have not run to completion.  相似文献   

4.
A new type of temperature-sensitive deoxyribonucleic acid (DNA) synthesis mutant, which can divide without a completion of DNA replication, was isolated from a thymidine-requiring Escherichia coli strain by means of photo-bromouracil selection after nitrosoguanidine mutagenesis. In this mutant, in spite of the fact that DNA synthesis stopped immediately after the temperature shift from 30 to 41 C, cells could continue to divide, though at a reduced rate. This cell division without DNA synthesis at 41 C is further supported by the following results. (i) Cell division took place at high temperature without addition of thymidine but not at all at 30 C. The parent strain of the mutant did not divide at 41 C without thymidine. (ii) Smaller cells isolated from the culture grown at 41 C did not contain DNA. This was shown by chemical analysis of the smaller cells and on electron micrographs. Ability of cells to divide was examined according to sizes of cells. By using the culture at 30 C, cells of various sizes were separated by means of sucrose-density gradient centrifugation. It was found that all cell fractions, including the smallest one, could divide at high temperature. These results suggest that in this mutant the completion of DNA replication is not required for triggering cell division at high temperature. Heat sensitivity of a factor which links cell division with DNA replication appears to be responsible. Some possible mechanisms of the coordination between cell division and DNA replication are discussed.  相似文献   

5.
Populations of Tetrahymena pyriformis were synchronized by 30 min heat shocks at 34 °C separated by 160 min intervals at the normal growth temperature. The cells initiate DNA synthesis immediately after the cellular division, and the S period of the population lasts about 80 min. It was found that DNA replication is a prerequisite for the following synchronous division. Inhibition of the DNA synthesis in early S by starvation of the cells for thymidine prevents the forthcoming division. However, inhibition in the latter half of S does not prevent the subsequent division. Thus the cells have synthesized enough DNA to permit cell division before the end of a normal S period. These results are discussed in relation to the organization of the genome replication in the highly polyploid macronucleus.  相似文献   

6.
On CsCl isopycnic centrifugation of the DNA extracted from secondary mouse embryo (ME) cultures grown in the presence of 5-bromodeoxyuridine (BUdR) and 5-fluorodeoxyuridine (FUdR) for 40 h, 10 to 25% of the DNA was found to be unsubstituted, 70 to 80% was bromouracil-hybrid DNA, and 5 to 10% was heavy DNA. These results together with cell number determinations, autoradiography, and Feulgen microspectrophotometry revealed three types of cells in these cultures: (i) 60 to 80% of the cells replicated their DNA once, divided, and then stopped mitotic activity, (ii) 5 to 10% were going through a second round of DNA replication; whereas (iii) 10 to 30% did not replicate DNA during the BUdR-FUdR exposure. After the transfer of these cultures to normal medium (without BUdR-FUdR), up to 20% of the cells resumed DNA synthesis asynchronously within 60 h, but no increase in cell number was observed. BUdR-FUdR-treated cultures, which were infected with polyoma virus in the absence of the thymidine analogues, supported a lytic infection to the same extent as did untreated ME cultures. This was concluded from the similar number of cells, which were induced to synthesize DNA, from the similar replication rate of the viral DNA, from the similar number of cells containing polyoma capsid proteins, and from the similar yields of progeny virus determined by hemagglutination and plaque formation. Thus, BUdR-prelabeled ME cultures are suitable for the investigation of interactions of the polyoma and mouse genomes during the lytic infection.  相似文献   

7.
In diploid human cells, the DNA precursor pool equilibration times for exogenous thymidine are about twice those for the thymidine analogue 5-bromodeoxyuridine (BUdR); in cells that were either transformed chemically or derived from malignant tumours, the pool equilibration times are the same for thymidine and 5-bromodeoxyuridine and are closer in value to the shorter (bromodeoxyuridine) times of the diploid cells. Thymidine, if present in the culture medium with BUdR, is incorporated into DNA preferentially in diploid cells (by 2 or 3 to 1). Discrimination against bromodeoxyuridine is evident within 2 h of incubation of the two precursors with diploid cells, but is not observed even after 24 h in any of the transformed cell lines tested. Experiments were performed to test the effect of inhibitors of the mammalian DNA polymerases alpha (N-ethylmaleimide) and beta (incubation of cells at 45 °C) upon the ability of cells to synthesise DNA and to incorporate thymidine preferentially when present with equimolar BUdR. In diploid cells, overall in vivo DNA synthesis is more sensitive to N-ethylmaleimide and more resistant to 45 °C treatment than is DNA synthesis in the transformed cell lines. N-Ethylmaleimide decreases the capacity of diploid cells to discriminate against BUdR, whereas heating increases it. Transformed cells treated with N-ethylmaleimide remain unable to discriminate against BUdR; some transformed lines, when heated at 45 °C, become less incapable of such discrimination.  相似文献   

8.
Human NHIK 3025 cells, synchronized by mitotic selection, were given 2 mM thymidine, which inhibited DNA synthesis without reducing the rate of protein accumulation. After removal of the thymidine the cells proceeded towards mitosis and cell division, with an S duration 2 hours shorter than, but a G2 and M duration nearly identical to that of the control cells. If cycloheximide (1.25 m?M) was present together with thymidine, no net protein accumulation took place during the treatment, and the subsequent duration of S, G2, and M was similar to that of the untreated cells. The shortening of S seen after treatment with thymidine alone would therefore indicate that the rate of DNA synthesis depended on the amount of some preaccumulated protein. The postreplicative period in thymidine-treated cells was lengthened by cycloheximide treatment although the protein content had already been doubled. This suggests that proteins required for the traverse of this part of the cell cycle might have to be synthesized after completion of DNA replication. Shortly after removal of thymidine, the rate of protein accumulation declined markedly, indicating the existence of some mechanism for negative control of cell mass. In addition, the daughters of thymidine-treated cells had their cell cycle shortened by 2 hours. As a result, the cells had returned to balanced growth already in the first cell cycle following the induction of unbalanced growth. In conclusion, our experiments suggest that NHIK 3025 cells might require a minimum time in order to traverse the cell cycle, which is independent of cell mass.  相似文献   

9.
Resistance to 6-thioguanine was induced by 5-bromodeoxyuridine (BUdR) in synchronous Chinese hamster cells. The yield of mutant colonies was not proportional to the amount of BUdR incorporated into DNA; thus mutants were not due to mispairing of BUdR with guanine during replication. Few mutants were induced until BUdR concentrations exceeded that of the intracellular thymidine triphosphate pool and mutant yield was depressed by addition of thymidine to the medium. These data suggest that BUdR exerts an allosteric effect on the DNA synthesizing system which renders it more error prone.  相似文献   

10.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

11.
Effects of bromodeoxyuridine (BUdR) substitutions in phage T4 DNA on the initial stages of DNA replication were investigated. Electron microscope studies of partially replicated, light (thymidine-containing) T4 DNA revealed the presence of multiple loops and forks. These DNA preparations had no BUdR in either parental or newly synthesized DNA, and the observations thus show that multiple initiation of DNA replication is a normal event in T4 development and is not caused by the presence of BUdR. A comparison of early replicative stages of light and heavy (BUdR-containing) DNA in cells mixedly infected with light and heavy T4 phage showed that early DNA synthesis occurs preferentially on the light template. Heavy and light parental DNA became associated with the protein complex of replicative DNA with equal efficiency, and there was no effect of BUdR on the net rate of DNA synthesis after infection. Newly synthesized DNA from heavy templates sedimented more slowly through alkaline sucrose gradients than did newly synthesized DNA from light templates and appeared to represent fewer replicative regions per molecule. These data indicate that BUdR substitutions in the DNA caused a slight delay in initiation but that replication of heavy DNA proceeded normally once initiated.  相似文献   

12.
A 5-bromo-2'-deoxyuridine (BUdR)-tolerant derivative of a thymidine (TdR)-requiring strain of Bacillus subtilis was used to examine the effect of BUdR, an analogue of TdR, on sporulation. At a TdR:BUdR ratio which had little effect on growth, sporulation was inhibited if cells were exposed to BUdR during the period of DNA synthesis at the onset of the process. Cells recovered from BUdR inhibition of sporulation if the analogue was removed and DNA replication allowed to continue with TdR alone. BUdR prolonged the period of DNA synthesis during sporulation and experiments with chloramphenicol suggested that this was due in part to unscheduled initiation of new rounds of replication.  相似文献   

13.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

14.
In this paper we report the construction of a Schizosaccharomyces pombe strain that facilitates analysis of replicating DNA. The strain co-expresses the Herpes simplex virus thymidine kinase gene (hsv-tk) and a human equilibrative nucleoside transporter (hENT1). The double integrant efficiently incorporates 3H-thymidine into nuclear DNA as monitored by scintillation counting. These strains also incorporate the thymidine analog Bromodeoxy uridine (BUdR) into newly replicated DNA, which can be detected by immunofluorescence and flow cytometry. This strain provides a valuable tool for direct study of DNA replication in S.pombe.  相似文献   

15.
The temporal schedule of DNA replication in heat-synchronized Tetrahymena was studied by autoradiographic and cytofluorometric methods. It was shown that some cells, which were synchronized by selection of individual dividing cells or by temporary thymidine starvation, incorporated [3H]thymidine into macronuclei in a periodic fashion during the heat-shock treatment. It was concluded that supernumerary S periods occurred while cell division was blocked by high temperature. The proportion of cells which initiated supernumerary S periods was found to be dependent on the duration of the heat-shock treatment and on the cell cycle stage when the first heat shock was applied. Cytofluorometric measurements of Feulgen-stained macronuclei during the heat-shock treatment indicated that the DNA complement of these cells was substantially increased and probably duplicated during the course of each S period. Estimates of DNA content also suggested that the rate of DNA synthesis progressively declined during long heat-shock treatments. These results indicate that the mechanism which brings about heat-induced division synchrony is not an interruption of the process of DNA replication. Further experiments were concerned with the regulation of DNA synthesis during the first synchronized division cycle. It was shown that participation in DNA synthesis at this time increased as more cells were able to conclude the terminal S period during the preceding heat-shock treatment. It is suggested that a discrete period of time is necessary after the completion of DNA synthesis before another round of DNA synthesis can be initiated.  相似文献   

16.
Near-ultraviolet photoproducts of l-tryptophan (TP) differentially inhibited deoxyribonucleic acid (DNA) replication in wild-type cells and uvrA, polA1, and recA recB double mutants of Escherichia coli. Wild-type cells labeled in their DNA with [(3)H]thymidine in the presence of TP produced small pieces of DNA (7 x 10(6) daltons), which corresponded in size to late replicative intermediates of discontinuous DNA synthesis. Moreover, when TP was present, it took five times longer to chase the low-molecular-weight DNA pieces into high-molecular-weight DNA. The observation of replicative intermediates in the presence of TP, and their slow chase into high-molecular-weight DNA in the presence of TP, is strong evidence that TP stabilizes replication gaps in E. coli DNA. Although TP slowed DNA replication in wild-type cells, this effect was transient and DNA synthesis eventually resumed at a normal rate. However, in polA1 and recA recB mutants, DNA synthesis was completely inhibited. Determinations of size and total counts of cells incubated in TP suggested that TP uncouples cell division from DNA replication in recA recB mutants, whereas these processes remain coupled in wild-type cells and in uvrA and polA1 mutants. The slow chase of TP-stabilized pieces of DNA in the presence of TP suggested that the selective effect of TP on DNA synthesis and viability in repair-deficient mutants is a result of TP inhibition of replication gap closure.  相似文献   

17.
Erythroid differentiation of Friend leukemia cells is enhanced when the cells are grown for four days in the presence of dimethylsulfoxide (DMSO). Dimethylformamide (DMF) has a similar though less marked effect. 5-Bromo-2′-deoxyuridine (BUdR) (10?5M) inhibits both DMF- and DMSO-stimulated differentiation. For maximum inhibition, BUdR must be present during the first two days of growth, during which time DNA synthesis is maximal. The addition of BUdR after the third day has no effect. Since BUdR is incorporated into DNA and thymidine prevents BUdR inhibition of DMSO-stimulated differentiation, it is likely that BUdR acts by virtue of its incorporation into DNA. Although BUdR alone had little effect upon cell multiplication, in combination with DMSO, cell growth was inhibited up to 40%. Since the BUdR-inhibition of the DMSO effect was approximately 70%, it is unlikely that its effect on differentiation is due to selective killing of those cells which are stimulated to differentiate.  相似文献   

18.
Direct evidence is provided for the formation of hybrid DNA during mitotic recombination in CHO cells. The cells were labeled for one round of replication in medium containing BUdR, so that the density of the DNA was heavy light (HL) and then returned to light medium. Further DNA synthesis, during either repair or chromosome replication, can only result in HL or fully light (LL) DNA; however, the formation of hybrid DNA as part of the process of recombinational repair will produce some fully heavy (HH) DNA.A small fraction of DNA containing regions of HH DNA has been detected on neutral CsCl gradients, and the amount of this DNA is increased by treatment of the cells with mitomycin C. Increasing doses of mitomycin C produce similar increases in both the amount of HH DNA and the frequency of sister chromatid exchanges measured cytologically. This correlation provides evidence that the HH DNA is hybrid DNA, formed as an intermediate in recombinational repair.  相似文献   

19.
Three mouse tumour cell lines grew continuously in 3 micro M 5-bromodeoxyuridine (BUdR). One line (MC-2) produced a retrovirus and altered in morphology in the presence of BUdR or 5-iododeoxyuridine (IUdR). These effects, which could be reversed by growth in normal medium were similar to those reported for the B-16 mouse melanoma line. The B-16 line used in this study, however, as well as a variety of human cells (six melanoma lines and three fibroblast strains), were much more sensitive to BUdR, 0.03-0.1 micro M being the maximum tolerated levels for continuous growth. No virus production or changes in morphology were induced in these cells by BUdR, deoxyuridine (UdR), 5-fluorodeoxyuridine (FUdR) or thymidine (TdR). The results of cell labelling and growth studies showed a correlation of incorporation of BUdR into DNA with toxicity. Compared on a competitive basis with 1 micro M TdR, the order of incorporation of 1 micro M nucleosides by two human cell lines was TdR = BUdR = IUdR greater than UdR greater than FUdR. In contrast to previous reports that FUdR is incorporated into RNA but not into DNA, half of the FUdR label was found in alkalistable, DNase-sensitive material. Over 90% of the other compounds was incorporated into DNA. All of the UdR and 60% of the IUdR label was incorporated as thymidine; this conversion could be inhibited by labelling in the presence of FUdR.  相似文献   

20.
The modality of incorporation of 5-bromo-2′deoxyuridine (BUdR) in the DNA of Dictyostelium discoideum was studied after one generation of growth of the amoebae in the presence of different concentrations of the drug. The analog was incorporated following the semiconservative pattern of DNA replication. BUdR incorporation in monosubstituted DNA has been measured both by CsCl isopycnic centrifugation or by base analysis chromatography; substitution of thymidine by its analog reaches a maximal value of 30% (60% in the substituted strand). Up to 20% substitution it is proportional to the drug concentration in the growth medium. In these conditions, thymidine substitution is higher in repetitive sequences of the DNA than in unique sequences; the percent of increase of thymidine substitution in repetitive fractions versus total DNA is inversely proportional to thymidine substitution in total DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号