首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.  相似文献   

2.
3.
As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M.  相似文献   

4.
5.
Nutrient secretagogues activate mitochondria of the pancreatic β‐cell through the provision of substrate, hyperpolarisation of the inner mitochondrial membrane and mitochondrial calcium rises. We report that mitochondrial matrix pH, a parameter not previously studied in the β‐cell, also exerts an important control function in mitochondrial metabolism. During nutrient stimulation matrix pH alkalinises, monitored by the mitochondrial targeted fluorescent pH‐sensitive protein mtAlpHi or 31P‐NMR inorganic phosphate chemical shifts following saturation transfer. Compared with other cell types, the resting mitochondrial pH was surprisingly low, rising from pH 7.25 to 7.7 during nutrient stimulation of rat β‐cells. As cytosolic alkalinisation to the nutrient was of much smaller amplitude, the matrix alkalinisation was accompanied by a pronounced increase of the ΔpH across the inner mitochondrial membrane. Furthermore, matrix alkalinisation closely correlates with the cytosolic ATP net increase, which is also associated with elevated ATP synthesis rates in mitochondria. Preventing ΔpH increases in permeabilised cells abrogated substrate‐driven ATP synthesis. We propose that the mitochondrial pH and ΔpH are key determinants of mitochondrial energy metabolism and metabolite transport important for cell activation.  相似文献   

6.
In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.  相似文献   

7.
Mitochondria are critical for regulation of the activation, differentiation, and survival of macrophages and other immune cells. In response to various extracellular signals, such as microbial or viral infection, changes to mitochondrial metabolism and physiology could underlie the corresponding state of macrophage activation. These changes include alterations of oxidative metabolism, mitochondrial membrane potential, and tricarboxylic acid (TCA) cycling, as well as the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) and transformation of the mitochondrial ultrastructure. Here, we provide an updated review of how changes in mitochondrial metabolism and various metabolites such as fumarate, succinate, and itaconate coordinate to guide macrophage activation to distinct cellular states, thus clarifying the vital link between mitochondria metabolism and immunity. We also discuss how in disease settings, mitochondrial dysfunction and oxidative stress contribute to dysregulation of the inflammatory response. Therefore, mitochondria are a vital source of dynamic signals that regulate macrophage biology to fine-tune immune responses.  相似文献   

8.
9.
Acetoin, an unusual metabolite of highly glycolytic mammalian tumor cells, is synthesized from decarboxylated pyruvate and active acetaldehyde in mitochondria. It plays important roles in the regulation and detoxification of pyruvate metabolism through pyruvate dehydrogenase. We show in this report the inhibitory effect of acetoin on succinate oxidation by Ehrlich tumor cell mitochondria, and thus its regulatory role on intermediate metabolism. Acetoin utilization by Ehrlich mitochondria may lead to small quantities of citrate formation which increase the already increased cholesterol synthesis of cancer cells. Membranes, in particular the inner mitochondrial membrane, flooded with cholesterol, show a proton passive permeability twice as low as that of control mitochondrial membranes, a feature that may be related to drastic changes in membrane potential-dependent metabolism of cancer cells.  相似文献   

10.
《PLoS biology》2021,19(4)
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.

This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.  相似文献   

11.
Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions.  相似文献   

12.
Mitochondria are essential organelles for the oxidative energy metabolism in eukaryotic cells. Determinants of mitochondrial morphology as well as the machinery underlying their subcellular distribution are not well understood. In this study we constructed an Aspergillus nidulans strain, in which mitochondria are stained with the green-fluorescent protein (GFP) to visualize them and study their behavior in vivo (http://www.uni-marburg. de/mpi/movies/mitochondria/mitochondria.html). Mitochondria form a complex membranous system in the cytoplasm consisting of interconnected tubular structures. Mitochondrial tubes separate frequently or produce small organelles that migrate some distance with velocities of up to 15 microm/min before they fuse again with the reticulum. Experiments using cytochalasin A as an anti-cytoskeletal drug revealed that a functional actin cytoskeleton is crucial for mitochondrial morphology and the dynamic behavior of the mitochondrial network. Movement of organelles along actin filaments requires actin-dependent motor proteins, such as myosin. We found that MyoA, a class I myosin motor of A. nidulans involved in vesicle migration, is not responsible for mitochondrial movement.  相似文献   

13.
Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.  相似文献   

14.
The tyrosine kinase Src is upregulated in several cancer cells. In such cells, there is a metabolic reprogramming elevating aerobic glycolysis that seems partly dependent on Src activation. Src kinase was recently shown to be targeted to mitochondria where it modulates mitochondrial bioenergetics in non-proliferative tissues and cells. The main goal of our study was to determine if increased Src kinase activity could also influence mitochondrial metabolism in cancer cells (143B and DU145 cells). We have shown that 143B and DU145 cells produce most of the ATP through glycolysis but also that the inhibition of OXPHOS led to a significant decrease in proliferation which was not due to a decrease in the total ATP levels. These results indicate that a more important role for mitochondria in cancer cells could be ensuring mitochondrial functions other than ATP production. This study is the first to show a putative influence of intramitochondrial Src kinase on oxidative phosphorylation in cancer cells. Indeed, we have shown that Src kinase inhibition led to a decrease in mitochondrial respiration via a specific decrease in complex I activities (NADH-ubiquinone oxidoreductase). This decrease is associated with a lower phosphorylation of the complex I subunit NDUFB10. These results suggest that the preservation of complex I function by mitochondrial Src kinase could be important in the development of the overall phenotype of cancer.  相似文献   

15.
Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells.  相似文献   

16.
A deer was needle-exposed intravenously to Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) in canine macrophage (DH82) cells and 7 days later was infested with laboratory-reared Amblyomma maculatum (Koch) (Acari:Ixodidae) nymphs for acquisition feeding. After molting, the adult ticks were allowed to feed on a naive deer. The organism was reisolated from the needle-exposed deer by cell culture and E. chaffeensis DNA was detected in the deer's blood by PCR. Similar isolation/recovery techniques were used for the tick-exposed deer and no evidence of infection was found. Although these findings must be considered as preliminary owing to inadequate controls, the data suggest that A. maculatum is probably not a suitable vector for E. chaffeensis.  相似文献   

17.
18.
In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNFα, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by FCCP were investigated on the mitochondrial population of 3T3-L1 adipocytes by both quantitative and qualitative approaches. We found that mild mitochondrial uncoupling does not stimulate mitochondrial biogenesis in adipocytes but induces an adaptive cell response characterized by quantitative modifications of mitochondrial protein content. Superoxide anion radical level was increased in mitochondria of both TNFα- and FCCP-treated adipocytes, whereas mitochondrial DNA copy number was significantly higher only in TNFα-treated cells. Subproteomic analysis revealed that the abundance of pyruvate carboxylase was reduced significantly in mitochondria of TNFα- and FCCP-treated adipocytes. Functional study showed that overexpression of this major enzyme of lipid metabolism is able to prevent the triglyceride content reduction in adipocytes exposed to mitochondrial uncoupling or TNFα. These results suggest a new mechanism by which the effects of mitochondrial uncoupling might limit triglyceride accumulation in adipocytes.  相似文献   

19.
Mitochondria continuously change shape, position, and matrix configuration for optimal metabolite exchange. It is well established that changes in mitochondrial metabolism influence mitochondrial shape and matrix configuration. We demonstrated previously that inhibition of mitochondrial complex I (CI or NADH:ubiquinone oxidoreductase) by rotenone accelerated matrix protein diffusion and decreased the fraction and velocity of moving mitochondria. In the present study, we investigated the relationship between inherited CI deficiency, mitochondrial shape, mobility, and matrix protein diffusion. To this end, we analyzed fibroblasts of two children that represented opposite extremes in a cohort of 16 patients, with respect to their residual CI activity and mitochondrial shape. Fluorescence correlation spectroscopy (FCS) revealed no relationship between residual CI activity, mitochondrial shape, the fraction of moving mitochondria, their velocity, and the rate of matrix-targeted enhanced yellow fluorescent protein (mitoEYFP) diffusion. However, mitochondrial velocity and matrix protein diffusion in moving mitochondria were two to three times higher in patient cells than in control cells. Nocodazole inhibited mitochondrial movement without altering matrix EYFP diffusion, suggesting that both activities are mutually independent. Unexpectedly, electron microscopy analysis revealed no differences in mitochondrial ultrastructure between control and patient cells. It is discussed that the matrix of a moving mitochondrion in the CI-deficient state becomes less dense, allowing faster metabolite diffusion, and that fibroblasts of CI-deficient patients become more glycolytic, allowing a higher mitochondrial velocity.  相似文献   

20.
Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units. membrane potential; fusion; fission; heterogeneity; green fluorescent protein; tetramethylrhodamine ethyl ester perchlorate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号