首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rock‐dwelling, endolithic micro‐organisms can create tubular microcavities (TMCs) by the dissolution of rock substrates. Microtunnels can also conceivably be formed by abiotic processes, and collectively, these structures are here termed tubular microcavities. A textural record of life in subseafloor environments is provided by biological TMCs, and it is imperative to distinguish these from abiological tunnels. To this end, the morphologies and petrographic context of tunnels formed by chemical solution, physical abrasion, and biological processes are here described. Biological TMCs in volcanic glass are restricted to sites that were connected to early fluid circulation. Their shapes, distribution, and the absence of intersections exclude an origin by chemical dissolution of pre‐existing heterogeneities such as, radiation damage trails, gas‐escape structures, or fluid inclusion trails. Rather their characteristics are best explained by microbial dissolution, involving perhaps, cellular extensions that provide a mechanism of localizing and directing microtunnel formation as observed in terrestrial soils. Biological TMCs are contrasted with ambient inclusion trails (AITs) found in cherts and authigenic minerals. These differ in exhibiting longitudinal striae, a constant diameter, and polygonal cross‐section, sometimes with terminal inclusions. The origin(s) of AITs remain unclear but they are hypothesized to form by migration of crystalline or organic inclusions in sealed substrates, in contrast to biotic TMCs that form in open systems. We present diagnostic morphological and petrographic criteria for distinguishing these different types of TMCs. Moreover, we argue that AIT‐type processes are not viable in volcanic glass because of the absence of crystalline millstones, localized chemical solution agents, and elevated fluid pressures, necessary to drive this process.  相似文献   

2.
We developed a simple approach to carry out in situ electron microscopy of single Li‐ion battery cathode particles during electrochemical cycling. We focused on Li(Ni0.8Co0.15Al0.05)O2‐based cathode materials because life‐cycle tests suggest a strong contribution of the cathode material to changes in cell impedance. In situ scanning electron microscopy was carried out operando during cycling and at various stages by interrupted cycling. Our work revealed several important aspects of cathode oxide particle dynamics: significant separations develop between grains even during the very first charge (oxide delithiation) and electrolyte penetration through that crack network all the way into the particle interior. Comparing these results to post‐test microstructural characterization of oxide particles subjected to extensive cycling confirms the occurrence of these processes in practical cells and suggests that the physical separation and isolation of grains may contribute to performance degradation of lithium‐ion cells.  相似文献   

3.
Viable extremely halophilic archaea (haloarchaea) have been isolated from million‐year‐old salt deposits around the world; however, an explanation of their supposed longevity remains a fundamental challenge. Recently small roundish particles in fluid inclusions of 22 000‐ to 34 000‐year‐old halite were identified as haloarchaea capable of proliferation (Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA, 2010, Environmental Microbiology, 12, 440–454). Searching for a method to produce such particles in the laboratory, we exposed rod‐shaped cells of Halobacterium species to reduced external water activity (aw). Gradual formation of spheres of about 0.4 μm diameter occurred in 4 m NaCl buffer of aw ≤ 0.75, but exposure to buffered 4 m LiCl (aw ≤ 0.73) split cells into spheres within seconds, with concomitant release of several proteins. From one rod, three or four spheres emerged, which re‐grew to normal rods in nutrient media. Biochemical properties of rods and spheres were similar, except for a markedly reduced ATP content (about 50‐fold) and an increased lag phase of spheres, as is known from dormant bacteria. The presence of viable particles of similar sizes in ancient fluid inclusions suggested that spheres might represent dormant states of haloarchaea. The easy production of spheres by lowering aw should facilitate their investigation and could help to understand the mechanisms for microbial survival over geological times.  相似文献   

4.
Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine‐grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878‐Ma Gunflint Formation, at Current River, Ontario. The AITs are 1–15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite‐ and chlorite‐rich laminae and chert‐filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data (34S/32S) obtained in situ from AIT pyrite have a δ34S of ?8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ34S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate‐reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2S were partially trapped within the microbial mat, helping produce birds‐eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low‐grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2, and potentially CH4, as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that potentially led to enhanced quartz solubility, plus increases in fluid and/or gas pressure during chlorite formation, with chlorite then infilling the AITs. This latter mechanism is novel and represents a possible way to generate AITs in environments lacking organic material.  相似文献   

5.
Solution and solution‐deposited thin films of the discotic liquid crystalline electron acceptor–donor–acceptor (A‐D‐A) p‐type organic semiconductor FHBC(TDPP)2, synthesized by coupling thienyl substituted diketopyrrolopyrrole (TDPP) onto a fluorenyl substituted hexa‐peri‐hexabenzocoronene (FHBC) core, are examined by ultrafast and nanosecond transient absorption spectroscopy, and time‐resolved photoluminescence studies to examine their ability to support singlet fission (SF). Grazing incidence wide‐angle X‐ray (GIWAX) studies indicate that as‐cast thin films of FHBC(TDPP)2 are “amorphous,” while hexagonal packed discotic liquid crystalline films evolve during thermal annealing. SF in as‐cast thin films is observed with an ≈150% triplet generation yield. Thermally annealing the thin films improves SF yields up to 170%. The as‐cast thin films show no long‐range order, indicating a new class of SF material where the requirement for local order and strong near neighbor coupling has been removed. Generation of long‐lived triplets (µs) suggests that these materials may also be suitable for inclusion in organic solar cells to enhance performance.  相似文献   

6.
Summary Samples ofPelargonium zonale with different virus symptoms were collected from several gardens in Madrid. Inoculation to test plants and electron microscopy of the samples were made.2 viruses were isolate from the samples; by symptomatology, size of the virus particles, and distribution of the virions in the host cells, one of them (P1) was identified withPelargonium leaf curl and the other (P2) seems to be a previously undescribed virus. The virus P2 forms crystalline inclusions composed of virus particles in the vacuoles of the infected cells.  相似文献   

7.
A one‐step, facile supercritical‐ethanol‐fluid synthesis of Se‐modified Ru nanoparticles nucleated on carbon defects is reported, and it is demonstrated that these nanoparticles provide, with >70% efficiency at 1 A g?1, a highly active and reversible oxygen‐reduction/oxygen‐evolution reaction on an air cathode in a nonaqueous electrolyte. The Se modification not only prevents Ru oxidation during charge/discharge cycling, but also improves the catalytic activity by promoting Li2O2 versus Li2O deposited on the Ru particles during discharge. A computational calculation with density functional theory supports the role of a larger electron transfer to the oxygen of Li2O2 adsorbed on a surface layer of RuSe2?δ than on a surface layer of RuO2, thereby shifting the more stable adsorbent from Li2O to Li2O2.  相似文献   

8.
Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock‐copolymer‐templating method. Pluronic F127 is used as a structure‐directing agent, with a low‐molecular‐weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small‐angle XRD and N2 sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area (~1300 m2/g), and large pore volumes (~1.50 cm3/g) after low‐temperature pyrolysis (900 °C). All surface areas come from mesopores. Wide‐angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp2 carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular‐shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures.  相似文献   

9.
Both Wheat Spindle Streak Mosaic Virus (WSSMV) and Soil-borne Wheat Mosaic Virus (SBWMV) were found on durum wheat plants (Triticum durum Desf.) grown in a field near Rome (Italy). The simultaneous occurrence of these pathogens was demonstrated by host-symptomatology, pattern of disease occurrence in the field, mechanical transmission tests, as well as by the morphology of viral particles and of ultrastructural modifications. Negatively stained preparates of diseased leaves collected in early, spring showed WSSMV particles and cytoplasmic cylindrical inclusions. SBWMV particles were found only in samples collected later in the season. Ultrathin sections of infected leaves collected in early spring showed characteristic WSSMV modifications such as pinwheels and membranous bodies, whereas samples collected later in the season contained also SBWMV-like crystalline aggregates. WSSMV infection appeared to develop and decline earlier than SBWMV in the leaves of durum wheat plants infected by both, viruses. WSSMV had not been reported in Italy before.  相似文献   

10.
Anna Appiano  P. Redolfi 《Protoplasma》1993,174(3-4):116-127
Summary The cytopathology induced by an isolate of tobacco necrosis virus (TNV-W) causing wilted, non-self-limiting lesions inPhaseolus bean was compared with that of abiotically-induced wilting. The main cell alterations specific to TNV-W infection were ER proliferation and vesiculation, plasmolysis and plasmalemma proliferation. Later there was lysis of most cell membranes, formation of crystalline inclusions in the chloroplasts and development of fibrous structures in the cytoplasm. It is suggested that the chloroplast inclusions consist of ribulose-1,5-bisphosphate carboxylase (RuBisCo). TNV-W replicated extensively in infected cells, often forming large crystalline aggregates of virus particles. Tissue wilting, as well as crystallization of the virus and RuBisCo, may have been caused by cell dehydration due to the loss of plasmalemma integrity.Abbreviations CA chromic acid - CI crystalline inclusion - DG dense granule - E ethanol - ER endoplasmic reticulum - FS fibrous structure - H2O2 hydrogen peroxyde - MVB multivesicular body - Pb lead citrate - PTA phosphotungstic acid - RuBisCo ribulose-1,5-bisphosphate carboxylase - TNV-W tobacco necrosis virus-wilting - UA uranyl acetate  相似文献   

11.
The synthesis of a new layered cathode material, Na0.5[Ni0.23Fe0.13Mn0.63]O2, and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X‐ray diffraction studies and high resolution scanning electron microscopy images reveal a well‐defined P2‐type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na0.5[Ni0.23Fe0.13Mn0.63]O2 to be among the most promising materials for the next generation of sodium‐ion batteries.  相似文献   

12.
Silicon was localized in some dicotyledons (Minuartia verna, Silene cucubalus, Thlaspi coerulescens, Viola calaminaria, Nicotiana tabacum, Pisum sativum) by analytical transmission electron microscopy as apoplastic crystalline inclusions of SiO2 in intercellular spaces of the leaf parenchyma, between cell wall and plasma membrane and inside the vacuoles. Ca-silicate, and in some plants Sn-silicate, forms the peripheral parts of the crystalline inclusions. These unstable compounds are converted spontaneously in the plant cells into the more stable SiO2, which forms the central part of all crystalline inclusions. The function of silicon in these plants is discussed.  相似文献   

13.
Immunoelectron microscopic techniques were utilized to characterize the morphology of circumsporozoite protein-containing trails deposited on various substrates by gliding Plasmodium berghei and Plasmodium falciparum sporozoites. The basic components of the trails are beadlike particles, 25 to 90 nm in diameter, which are devoid of unit membrane and have an electronlucent center. Trails were captured on formvar-covered grids coated with anticircumsporozoite protein monoclonal antibodies and compared with trails produced on uncoated formvar; the results suggest that material containing circumsporozoite protein forms the matrix within which the particles are embedded. The trails exhibit morphological features similar to those displayed by circumsporozoite precipitation reactions; of note is the demonstration of sheaths of circumsporozoite protein-containing material that emanate from sporozoites prior to their gliding. The sheaths narrow into accumulations of electron-dense material, which eventually taper to form typical trails. The structural manifestation of sheaths and other morphological details of the formed trails enables us to correlate sporozoite behavior during trail formation with the motile actions of gliding sporozoites observed by light microscopy.  相似文献   

14.
Immunoelectron microscopic techniques were utilized to characterize the morphology of circumsporozoite protein-containing trails deposited on various substrates by gliding Plasmodium berghei and Plasmodium falciparum sporozoites. The basic components of the trails are beadlike particles, 25 to 90 nm in diameter, which are devoid of unit membrane and have an electron-lucent center. Trails were captured on formvar-covered grids coated with anticircumsporozoite protein monoclonal antibodies and compared with trails produced on uncoated formvar; the results suggest that material containing circumsporozoite protein forms the matrix within which the particles are embedded. The trails exhibit morphological features similar to those displayed by circumsporozoite precipitation reactions; of note is the demonstration of sheaths of circumsporozoite protein-containing material that emanate from sporozoites prior to their gliding. The sheaths narrow into accumulations of electron-dense material, which eventually taper to form typical trails. The structural manifestation of sheaths and other morphological details of the formed trails enables us to correlate sporozoite behavior during trail formation with the motile actions of gliding sporozoites observed by light microscopy.  相似文献   

15.
J. Burgess 《Planta》1971,96(3):238-247
Summary A study has been made of the structure and behaviour during mitosis of a crystalline inclusion within cell nuclei of roots of Dryopteris filix-max. The inclusion within the interphase nucleus is an aggregate of randomly oriented crystals. All the crystals are similar, and consist of a cubic array of particles of unit spacing approximately 100 Å. During mitosis, the inclusions are eliminated from the nucleoplasm at prometaphase. The crystals reappear within the nucleus at early interphase by a process of random crystallisation from a preformed mass of amorphous material. The results are discussed in the light of previous work on nuclear inclusions in plants and of current theories of the mode of action of microtubules.  相似文献   

16.
A systematic optimization of p‐type Sb2Te3 thermoelectric films made by potentiostatic electrodeposition on Au and stainless steel substrates is presented. The influence of the preparative parameters of deposition voltage, concentration, and the deposition method are investigated in a nitric acid solution. As a postdeposition step, the influence of annealing the films is investigated. The use of a potential‐controlled millisecond‐pulsed deposition method could improve both the morphology and the composition of the films. The samples are characterized in terms of composition, crystallinity, Seebeck coefficient, and electrical resistivity. Pulsed‐deposited films exhibit Seebeck coefficients of up to 160 μV K?1 and an electrical conductivity of 280 S cm?1 at room temperature, resulting in power factors of about 700 μW m?1 K?2. After annealing, power factors of maximum 852 μW m?1 K?2 are achieved. Although the annealing of DC‐deposited films significantly increased the power factor, they do not reach the values of the pulsed‐deposited films in the preannealing state. Structural analysis is performed with X‐ray diffraction and shows the crystalline structure of Sb2Te3 films. The performance is tuned by annealing of deposited films up to 300 °C under He atmosphere while performing in‐situ X‐ray diffraction and resistivity measurements. The chemical analysis of the films is performed by inductively coupled plasma optical emission spectroscopy (ICP‐OES) as well as scanning electron microscope energy dispersive X‐ray analysis (SEM‐EDX).  相似文献   

17.
Summary Amaranthus plants infected with a virus of rod-shaped particles showed under the light microscope intracytoplasmic amorphous and crystalline inclusions.The submicroscopic organization of mesophyll cells from infectedAmaranthus leaves by electron microscopy is described. Besides big crystalline inclusions, long dark inclusions correspondent to needle-like inclusions observed by light microscopy are definable in the cytoplasm. The amorphous inclusion bodies were formed by an overgrown protrusion of vacuolate cytoplasm containing virus particles, long very dark stained inclusions forming dense bands and rings, normal elements of the cytoplasm such as mitochondria, endoplasmic reticulum and ribosomes, and some spherosomes. Inclusions and virus particles were not found in chloroplasts, mitochondria or nuclei of infected cells.  相似文献   

18.
Superior reaction reversibility of electrode materials is urgently pursued for improving the energy density and lifespan of batteries. Tin dioxide (SnO2) is a promising anode material for alkali‐ion batteries, having a high theoretical lithium storage capacity of 1494 mAh g? based on the reactions of SnO2 + 4Li+ + 4e? ? Sn + 2Li2O and Sn + 4.4Li+ + 4.4e? ? Li4.4Sn. The coarsening of Sn nanoparticles into large particles induced reaction reversibility degradation has been demonstrated as the essential failure mechanism of SnO2 electrodes. Here, three key strategies for inhibiting Sn coarsening to enhance the reaction reversibility of SnO2 are presented. First, encapsulating SnO2 nanoparticles in physical barriers of carbonaceous materials, conductive polymers or inorganic materials can robustly prevent Sn coarsening among the wrapped SnO2 nanoparticles. Second, constructing hierarchical, porous or hollow structured SnO2 particles with stable void boundaries can hinder Sn coarsening between the void‐divided SnO2 subunits. Third, fabricating SnO2‐based heterogeneous composites consisting of metals, metal oxides or metal sulfides can introduce abundant heterophase interfaces in cycled electrodes that impede Sn coarsening among the isolated SnO2 crystalline domains. Finally, a perspective on the future prospect of the structural/compositional designs of SnO2 as anode of alkali‐ion batteries is highlighted.  相似文献   

19.
Y Wang  B Yang  PD Townsend 《Luminescence》2013,28(3):253-258
Luminescence data have often been used to study imperfections and to characterize lattice distortions because the signals are sensitive to changes of structure and composition. Previous studies have included intentionally added probe ions such as rare earth ions to sense distortions in local crystal fields caused by modified structural environments. An under‐exploited extension of this approach was to use luminescence to monitor crystalline phase changes. A current overview of this new and powerful technique shows that continuous scanning of the sample temperatures immediately offered at least three types of signatures for phase transitions. Because of high sensitivity, luminescence signals were equally responsive to structural changes from inclusions and nanoparticles. These coupled to the host material via long‐range interactions and modified the host signals. Two frequently observed examples that are normally overlooked are from nanoparticle inclusions of water and CO2. Examples also indicated that phase transitions were detected in more diverse materials such as superconductors and fullerenes. Finally, luminescence studies have shown that in some crystalline examples, high dose ion implantation of surface layers could induce relaxations and/or structural changes of the entire underlying bulk material. This was an unexpected result and therefore such a possibility has not previously been explored. However, the implications for ion implication are significant and could be far more general than the examples mentioned here. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Comparative cytopathology of Crinivirus infections in different plant hosts   总被引:1,自引:0,他引:1  
We used transmission electron microscopy to compare the cytopathology induced in plants by five criniviruses (genus Crinivirus; Lettuce infectious yellows virus (LIYV), Cucurbit yellow stunting disorder virus (CYSDV), Tomato infectious chlorosis virus (TICV), Tomato chlorosis virus (ToCV) and Beet pseudo‐yellows virus (BPYV) (Hartono et al., 2003)). We also compared the patterns of infection for plants and mesophyll protoplasts infected by LIYV and Beet yellows virus (BYV), type members of genera Crinivirus and Closterovirus, respectively. The main cytopathological effects induced in plants by criniviruses were common in young leaves and included alterations of the chloroplasts and the presence of BYV‐type inclusion bodies in companion cells. Virus‐like particles were present in sieve tubes and vascular parenchyma cells as scattered particles, or in companion cells as large masses forming cross‐banded inclusions. Depending on the virus and the plant, it was possible to find virions or virus‐like particles out of the phloem cells, but only in cells of the bundle sheath. Virion‐like particles were never found outside of the vascular tissue. Accumulation of electron‐dense material at the plasmalemma was common for criniviruses, but only LIYV infections produced characteristic conical electron‐dense plasmalemma deposits (PDs). The LIYV‐induced PDs have a crystalline‐like structure and were found at the internal side of plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号