首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer‐term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair‐bonding songbird. We assessed variation in the interactions between individuals in male‐female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song‐induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029–1040, 2016  相似文献   

2.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

3.
The role of the aged in human society has received much attention from gerontologists, and the notion of a social role for aged monkeys is common in primatology. Four hundred and fifty hours of focal animal data were collected on a sample of 40 adult female Japanese monkeys. The animals are semi-free ranging and of known age. These data were analyzed in an attempt to determine whether old females constitute a behaviorally distinct subgroup. Very little behavioral variation based on age could be documented. Where age related variation occurs, it is better explained as a function of youth, rather than as a function of old age. The expectation that old monkeys will occupy a distinct social role because of their advanced age is discussed in terms of biological versus social aging, human versus non human aging, the evolution of behavioral change in old age, and the application of the social role concept to old female monkeys. It is concluded that there is little evidence that the behavior of the aged females differs significantly from that of the other adult females, and it does not appear that the fact of biological aging creates any radically different social situation which would cue the onset of specific role behavior for aged animals.  相似文献   

4.
Societies of highly social animals feature vast lifespan differences between closely related individuals. Among social insects, the honey bee is the best established model to study how plasticity in lifespan and aging is explained by social factors.The worker caste of honey bees includes nurse bees, which tend the brood, and forager bees, which collect nectar and pollen. Previous work has shown that brain functions and flight performance senesce more rapidly in foragers than in nurses. However, brain functions can recover, when foragers revert back to nursing tasks. Such patterns of accelerated and reversed functional senescence are linked to changed metabolic resource levels, to alterations in protein abundance and to immune function. Vitellogenin, a yolk protein with adapted functions in hormonal control and cellular defense, may serve as a major regulatory element in a network that controls the different aging dynamics in workers.Here we describe how the emergence of nurses and foragers can be monitored, and manipulated, including the reversal from typically short-lived foragers into longer-lived nurses. Our representative results show how individuals with similar chronological age differentiate into foragers and nurse bees under experimental conditions. We exemplify how behavioral reversal from foragers back to nurses can be validated. Last, we show how different cellular senescence can be assessed by measuring the accumulation of lipofuscin, a universal biomarker of senescence.For studying mechanisms that may link social influences and aging plasticity, this protocol provides a standardized tool set to acquire relevant sample material, and to improve data comparability among future studies.  相似文献   

5.
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.  相似文献   

6.
Many aspects of drug abuse and addiction share neurobiological substrates with the modulatory processes underlying the response and adaptation to acute stress. In particular, the ascending noradrenergic system has been implicated in facilitating the response to stress, and in stress-induced reinstatement of drug seeking behavior. Thus, to better understand the link between stress and addictive behaviors, it would be informative to understand better the modulatory function of the ascending noradrenergic system, and its interaction with other neurotransmitters with which it is closely associated or co-localized, such as the neuropeptide galanin. In this paper, we review a series of studies investigating the functional interactions of norepinephrine and galanin in modulating the behavioral response to acute stress in two components of the extended amygdala, the central nucleus of the amygdala and the lateral bed nucleus of the stria terminalis. We showed that norepinephrine facilitates behavioral reactivity to stress on the elevated plus-maze and social interaction tests. However, when stress-induced activation of the noradrenergic system was enhanced by blocking inhibitory adrenergic autoreceptors, galanin release was recruited in the central amygdala, acting to attenuate the behavioral response to stress. By contrast, stress-induced galanin release in the lateral bed nucleus appeared to be independent of enhanced noradrenergic activation, and unlike the central amygdala, both galanin and norepinephrine facilitated behavioral stress reactivity in the bed nucleus. The different modes of interaction and differential region- and response-specificity of galanin and norepinephrine suggest that a complex neural circuit interconnecting these two regions is involved in the modulatory effects of norepinephrine and galanin on the behavioral response to stress. Such complexity may allow for flexibility and plasticity in stress adaptation, and may also contribute to behavioral changes induced by chronic drug administration. Thus, the interaction of galanin and norepinephrine may be a viable target for the future development of novel therapeutic strategies for treating behavioral disorders related to stress or drug abuse.  相似文献   

7.
Organisms react to threats with a variety of behavioral, hormonal, and neurobiological responses. The study of biological responses to stress has historically focused on the hypothalamic-pituitary-adrenal axis, but other systems such as the mesolimbic dopamine system are involved. Behavioral neuroendocrinologists have long recognized the importance of the mesolimbic dopamine system in mediating the effects of hormones on species specific behavior, especially aspects of reproductive behavior. There has been less focus on the role of this system in the context of stress, perhaps due to extensive data outlining its importance in reward or approach-based contexts. However, there is steadily growing evidence that the mesolimbic dopamine neurons have critical effects on behavioral responses to stress. Most of these data have been collected from experiments using a small number of animal model species under a limited set of contexts. This approach has led to important discoveries, but evidence is accumulating that mesolimbic dopamine responses are context dependent. Thus, focusing on a limited number of species under a narrow set of controlled conditions constrains our understanding of how the mesolimbic dopamine system regulates behavior in response to stress. Both affiliative and antagonistic social interactions have important effects on mesolimbic dopamine function, and there is preliminary evidence for sex differences as well. This review will highlight the benefits of expanding this approach, and focus on how social contexts and sex differences can impact mesolimbic dopamine stress responses.  相似文献   

8.
Most of the signalling pathways involved in aging regulation have been recently found well conserved at various levels throughout the evolution. Taking this into account, a diversity of model organisms, including worms, rodents, and lemurs as well, allows to address different questions: how to understand the interactions between genetic and environmental factors while challenging theories of aging, to preserve hearing integrity, to fight against senescence of neural stem cells, or to explore brain fitness from gene expression to cognitive and social behavior? Here are the main issues that can be considered, stressing the complementarities of the models. The differentiation of aging physiological aspects from those induced by age-related pathologies will also be specified. By emphasizing recent ability of technologies to promote new aging insights, we discuss towards a better understanding of mechanisms governing aging.  相似文献   

9.
This study investigated the relationship between chronological age and social behavior in 42 adult male and female rhesus macaques (Macaca mulatta) in three specific areas: social interactions, social roles, and social networks. While both old males and old females share behavioral differences associated with senescence, this study reports that old females and old males are distinct in their social behaviors, both from each other and from other adults. Many of these differences appear progressive across age classes, e.g., declining across age classes in females and increasing across age classes in males. Old females are less social and have smaller social networks than other females, while the opposite was found to be true of old males. An explanation for the sex-based differences in aged social behavior and social networks reported in this study may originate in rhesus matrifocal social structure.  相似文献   

10.
Clearly the brain controls behavior but can behavior also "control" the brain? On an evolutionary time scale, selective ecological pressures shape the sensory and motor capacities as well as the body and behavior. Correspondingly, in development, behavior acts in concert with the environment to cause structural changes in the brain lasting a lifetime. Surprisingly, in "real time" social behavior can also cause changes, typically reversible, in the brain in adult animals. Changes caused by behavioral interactions can be dramatic, and in many instances, these interactions are directly related to reproductive behavior. Understanding how behavior sculpts the brain in the course of behavioral interactions is a major challenge. Analyzing such changes requires a model system allowing control of the biological and behavioral environment of many animals simultaneously yet allowing access to physiological, cellular and molecular processes being regulated. The mouthbrooding cichlid Haplochromis (Astatotilapia) burtoni (Günther) from Lake Tanganyika lends itself to the study of social influences on the brain. It has complex, though easily observable individual and social behaviors regulated by two distinct classes of males, those with territories and those without. Many features of the animals are shaped by social encounters including the maturation of juveniles, the hypothalamic-pituitary-gonadal axis, the growth rate, the basal stress level among others. How does social information effect change in the brain and body? Animals must attend to the social scene to identify their chances. Learning how social information is transduced into cellular changes in this species should help understand how this happens in other social animals.  相似文献   

11.
Proteins of the Homer1 immediate early gene family have been associated with synaptogenesis and synaptic plasticity suggesting broad behavioral consequences of loss of function. This study examined the behavior of male Homer1 knockout (KO) mice compared with wild-type (WT) and heterozygous mice using a battery of 10 behavioral tests probing sensory, motor, social, emotional and learning/memory functions. KO mice showed mild somatic growth retardation, poor motor coordination, enhanced sensory reactivity and learning deficits. Heterozygous mice showed increased aggression in social interactions with conspecifics. The distribution of mGluR5 and N-methyl-D-aspartate receptors (NMDA) receptors appeared to be unaltered in the hippocampus (HIP) of Homer1 KO mice. The results indicate an extensive range of disrupted behaviors that should contribute to the understanding of the Homer1 gene in brain development and behavior.  相似文献   

12.
Daniel Münch  Gro V. Amdam 《FEBS letters》2010,584(12):2496-2503
As in all advanced insect societies, colony-organization in honey bees emerges through a structured division of labor between essentially sterile helpers called workers. Worker bees are sisters that conduct all social tasks except for egg-laying, for example nursing brood and foraging for food. Curiously, aging progresses slowly in workers that engage in nursing and even slower when bees postpone nursing during unfavorable periods. We, therefore, seek to understand how senescence can emerge as a function of social task performance. The alternative utilization of a common yolk precursor protein (vitellogenin) in nursing and somatic maintenance can link behavior and aging plasticity in worker bees. Beneficial effects of vitellogenin may also be mediated by inhibitory action on juvenile hormone and insulin-like signaling.  相似文献   

13.
Phenotypic plasticity is important in the evolution of traits and facilitates adaptation to rapid environmental changes. However, variation in plasticity at the individual level, and the heritable basis underlying this plasticity is rarely quantified for behavioral traits. Alternative behavioral reproductive tactics are key components of mating systems but are not often considered within a phenotypic plasticity framework (i.e., as reaction norms). Here, using lines artificially selected for repeated mating rate, we test for genetic (G × E) sources of variation in reproductive behavior of male Nicrophorus vespilloides burying beetles (including signaling behavior), as well as the role of individual body size, in responsiveness to changes in social environment. The results show that body size influences the response of individuals’ signaling behavior to changes in the social environment. Moreover, there was G × E underlying the responses of males to variation in the quality of social environment experienced (relative size of focal male compared to his rival). This shows that individual variation in plasticity and social sensitivity of signaling behavior can evolve in response to selection on investment in mating behavior, with males selected for high mating investment having greater social sensitivity.  相似文献   

14.
Originally identified as an outcome of continuous culture of primary cells, cellular senescence has moved beyond the culture dish and is now a bona fide driver of aging and disease in animal models, and growing links to human disease. This cellular stress response consists of a stable proliferative arrest coupled to multiple phenotypic changes. Perhaps the most important of these is the senescence-associated secretory phenotype, or senescence-associated secretory phenotype —a complex and variable collection of secreted molecules release by senescent cells with a number of potent biological activities. Senescent cells appear in multiple age-associated conditions in humans and mice, and interventions that eliminate these cells can prevent or even reverse multiple diseases in mouse models. Here, we review salient aspects of senescent cells in the context of human disease and homeostasis. Senescent cells increase in abundance during several diseases that associated with premature aging. Conversely, senescent cells have a key role in beneficial processes such as development and wound healing, and thus can help maintain tissue homeostasis. Finally, we speculate on mechanisms by which deleterious aspects of senescent cells might be targeted while retaining homeostatic aspects in order to improve age-related outcomes.  相似文献   

15.
Reproductive senescence is a central and defining life‐history characteristic of every known mammal. Within the scope of human senescence research, attention has been mainly focused on females, particularly in reference to the uniqueness of menopause. However, consideration of the evolution of human male reproductive senescence has been minimal, primarily due to the assumption that male fertility, as compared to that of females, is relatively invariant with age. Moreover, theoretical development of our understanding of human male reproductive senescence has not been extensive despite increasing awareness of the importance of life‐history trade‐offs in association with aging. Emerging research now illustrates important aspects of male reproductive senescence, exhibit significant variation and phenotypic plasticity, while others are less malleable. Changes in hormone‐modulated somatic integrity with age also show important population differences, most likely as the result of reaction norms in response to environmental variation. Coupled with emerging ideas about the energetics of life‐history trade‐offs in human males, a new perspective is beginning to emerge. It suggests that human males exhibit potentially adaptive shifts in reproductive function in association with age.  相似文献   

16.
Although the study of adaptation is central to biology, two types of adaptation are recognized in the biological field: physiological adaptation (accommodation or acclimation; an individual organism’s phenotype is adjusted to its environment) and evolutionary–biological adaptation (adaptation is shaped by natural selection acting on genetic variation). The history of the former concept dates to the late nineteenth and early twentieth centuries, and has more recently been systemized in the twenty-first century. Approaches to the understanding of phenotypic plasticity and learning behavior have only recently been developed, based on cellular–histological and behavioral–neurobiological techniques as well as traditional molecular biology. New developments of the former concepts in phenotypic plasticity are discussed in bacterial persistence, wing di-/polymorphism with transgenerational effects, polyphenism in social insects, and defense traits for predator avoidance, including molecular biology analyses. We also discuss new studies on the concept of genetic accommodation resulting in evolution of phenotypic plasticity through a transgenerational change in the reaction norm based on a threshold model. Learning behavior can also be understood as physiological phenotypic plasticity, associating with the brain–nervous system, and it drives the accelerated evolutionary change in behavioral response (the Baldwin effect) with memory stock. Furthermore, choice behaviors are widely seen in decision-making of animal foragers. Incorporating flexible phenotypic plasticity and learning behavior into modeling can drastically change dynamical behavior of the system. Unification of biological sciences will be facilitated and integrated, such as behavioral ecology and behavioral neurobiology in the area of learning, and evolutionary ecology and molecular developmental biology in the theme of phenotypic plasticity.  相似文献   

17.
Social dynamics in territorial species often reflect underlying variation in aggression and other aspects of social dominance among individuals. In ornate tree lizards (Urosaurus ornatus), males differing in dewlap color differ in social dominance: while blue males are the dominant, aggressive morph and always territorial, yellow males tend to exhibit a less‐aggressive satellite behavioral tactic. However, in habitats with fewer available territorial resources, yellow males defend territories and increase in relative abundance. These observations suggest that consideration of social dominance alone may be insufficient to explain U. ornatus' territorial dynamics in the wild. Here, we tested how both dominance and another important behavioral trait, boldness, contribute to the outcome of territorial disputes in tree lizards. We recorded the territorial behavior of blue and yellow male tree lizards (entered in pairs) in an experimental arena. At the end of each trial, we then approached each male and recorded whether it fled (shy) or not (bold) in response to our approach. As expected, dominant blue males exploited the higher quality perch more often than yellow males. However, when approached by a simulated predator, blue males were more likely to flee than yellow males. Thus, while blue males are more dominant, yellow is likely the bolder morph. As a result, this morph may be better equipped to defend territories in riskier environments. We conclude that although dominance asymmetries may predictably drive initial territorial interactions among competing males, variation in other behaviors (like boldness) may perturb the long‐term outcome of these interactions across variable environments.  相似文献   

18.
For most people, their quality of life depends on their successful interdependence with others, which requires sophisticated social cognition, communication, and emotional bonds. Across the lifespan, new bonds must be forged and maintained, and conspecific menaces must be managed. The dynamic nature of the human social landscape suggests ongoing specific alterations in neural circuitry across several brain systems to subserve social behavior. To discover the biological mechanisms that contribute to normal social activities, animal models of social behavior have been developed. One valuable model system has been female rat sexual behavior, which is governed by cyclic variation of ovarian hormones. This behavior is modulated by the neuropeptide oxytocin (OT) through its actions in the hypothalamic ventromedial nucleus (VMH). The fluctuation of this behavior is associated with dendrite remodeling, like several other examples of behavioral plasticity. This review compares hormone-induced plasticity in the VMH with other examples of dendrite plasticity across the mammalian nervous system, namely the neurobehavioral paradigms of environmental enrichment, chronic stress, and incentive sensitization, which affect the neocortex, hippocampal formation, and ventral striatum, respectively. This comparison suggests that the effects of ovarian hormones on VMH neurons in rats, given the simple dendritic arbor and short time course for dendrite remodeling, provide a dual opportunity for mechanistic and functional studies that will shed light on i) the neural actions of OT that regulate social behavior and, ii) behaviorally relevant dendrite regulation in a variety of brain structures. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

19.
In social species animals should fine-tune the expression of their social behavior to social environments in order to avoid the costs of engaging in costly social interactions. Therefore, social competence, defined as the ability of an animal to optimize the expression of its social behavior as a function of the available social information, should be considered as a performance trait that impacts on the Darwinian fitness of the animal. Social competence is based on behavioral plasticity which, in turn, can be achieved by different neural mechanisms of plasticity, namely by rewiring or by biochemically switching nodes of a putative neural network underlying social behavior. Since steroid hormones respond to social interactions and have receptors extensively expressed in the social behavioral neural network, it is proposed that steroids play a key role in the hormonal modulation of social plasticity. Here, we propose a reciprocal model for the action of androgens on short-term behavioral plasticity and review a set of studies conducted in our laboratory using an African cichlid fish (Oreochromis mossambicus) that provide support for it. Androgens are shown to be implicated as physiological mediators in a wide range of social phenomena that promote social competence, namely by adjusting the behavioral response to the nature of the intruder and the presence of third parties (dear enemy and audience effects), by anticipating territorial intrusions (bystander effect and conditioning of the territorial response), and by modifying future behavior according to prior experience of winning (winner effect). The rapid behavioral actions of socially induced short-term transient changes in androgens indicate that these effects are most likely mediated by nongenomic mechanisms. The fact that the modulation of rapid changes in behavior is open to the influence of circulating levels of androgens, and is not exclusively achieved by changes in central neuromodulators, suggests functional relevance of integrating body parameters in the behavioral response. Thus, the traditional view of seeing neural circuits as unique causal agents of behavior should be updated to a brain-body-environment perspective, in which these neural circuits are embodied and the behavioral performance (and outcomes as fitness) depends on a dynamic relationship between the different levels. In this view hormones play a major role as behavioral modulators.  相似文献   

20.
Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to nonadditive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked. Specifically, behavioral responses (reciprocity), genetic relatedness, and synergy interact in nontrivial ways that cannot be easily captured by simple summary indices of assortment. We demonstrate the importance of these interactions by showing how they have been neglected in previous synthetic models of social behavior both within and between species. These interactions also affect the level of behavioral responses that can evolve in the long run; proximate biological mechanisms are evolutionarily stable when they generate enough responsiveness relative to the level of responsiveness that exactly balances the ecological costs and benefits. Given the richness of social behavior across taxa, these interactions should be a boon for empirical research as they are likely crucial for describing the complex relationship linking ecology, demography, and social behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号