首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Expression of microRNAs changes markedly in tumours and evidence indicates that they are causatively related to tumourigenesis, behaving as tumour suppressor microRNAs or onco microRNAs; in some cases they can behave as both depending on the type of cancer. Some tumour suppressor microRNAs appear to be an integral part of the p53 and Retinoblastoma (RB) network, the main regulatory pathways controlling senescence, a major tumour suppressor mechanism. The INK4a/ARF locus which codifies for two proteins, p19ARF and p16INK4a, plays a central role in senescence by controlling both p53 and RB. Recent evidence shows that the proto-oncogene leukaemia/lymphoma related factor, a p19ARF specific repressor, is controlled by miRNAs and that miRNAs, in particular miR-20a and miR-290, are causatively involved in mouse embryo fibroblasts (MEF) senescence in culture. Intriguingly, both miR-20a, member of the oncogenic miR-17-92 cluster, and miR-290, belonging to the miR-290-295 cluster, are highly expressed in embryonic stem (ES) cells. The pro-senescence role of miR-20a and miR-290 in MEF is apparently in contrast with their proliferative role in tumour and ES cells. We propose that miRNAs may exert opposing functions depending on the miRNAs repertoire as well as target/s level/s present in different cellular contexts, suggesting the importance of evaluating miRNAs activity in diverse genetic settings before their therapeutic use as tumour suppressors.  相似文献   

2.
Bai H  Xu R  Cao Z  Wei D  Wang C 《FEBS letters》2011,(2):2998-408
Recent studies have shown microRNA-21 (miR-21) is overexpressed in several types of cancer and contributes to tumor resistance to chemotherapy. In this study, we investigated whether miR-21 mediated resistance of the leukaemia cell line K562 to the chemotherapeutic agent daunorubicin (DNR). miR-21 expression was upregulated in the DNR resistant cell line K562/DNR compared to its parental line K562. Stable transfection of miR-21 induced drug resistance in K562, while suppression of miR-21 in K562/DNR led to enhanced DNR cytotoxicity. Additional experiments indicate that the mechanism of miR-21 drug resistance involves the PI3K/Akt pathway and changes following PTEN protein expression. This study provides a novel mechanism for understanding leukaemia drug resistance.  相似文献   

3.
The enzyme deoxyhypusine hydroxylase (DOHH) catalyzes the activation of eukaryotic translation initiation factor (eIF5A), a protein essential for cell growth. Using bioinformatic predictions and reporter gene assays, we have identified a 182-nt element within the DOHH 3′-untranslated region (3′-UTR) that contains a number of target sites for miR-331-3p and miR-642-5p. Quantitative RT-PCR studies demonstrated overexpression of DOHH mRNA and underexpression of miR-331-3p and miR-642-5p in several prostate cancer cell lines compared with normal prostate epithelial cells. Transient overexpression of miR-331-3p and/or miR-642-5p in DU145 prostate cancer cells reduced DOHH mRNA and protein expression and inhibited cell proliferation. We observed synergistic growth inhibition with the combination of miR-331-3p and miR-642-5p and mimosine, a pharmacological DOHH inhibitor. Finally, we identified a significant inverse relationship between the expression of miR-331-3p or miR-642-5p and DOHH in a cohort of human prostate cancer tissues. Our results suggest a novel role for miR-331-3p and miR-642-5p in the control of prostate cancer cell growth via the regulation of DOHH expression and eIF5A activity.  相似文献   

4.
miR-142-3p was reported to be downregulated in acute myelogenous leukemia (AML) and acted as a novel diagnostic marker. However, the regulatory effect of miR-142-3p on drug resistance of AML cells and its underlying mechanism have not been elucidated. Here, we found that miR-142-3p was significantly downregulated and high mobility group box 1 (HMGB1) was dramatically upregulated in AML samples and cells, as well as drug-resistant AML cells. P-gp level and autophagy were markedly enhanced in HL-60/ADR and HL-60/ATRA cells. miR-142-3p overexpression improved drug sensitivity of AML cells by inhibiting cell viability and promoting apoptosis, and inhibited P-gp level and autophagy in drug-resistant AML cells, whereas HMGB1 overexpression obviously reversed these effect. HMGB1 was demonstrated to be a target of miR-142-3p, and miR-142-3p negatively regulated HMGB1 expression. In conclusion, our study elucidated that upregulation of miR-142-3p improves drug sensitivity of AML through reducing P-glycoprotein and repressing autophagy by targeting HMGB1, contributing to better understanding the molecular mechanism of drug resistance in AML.  相似文献   

5.
6.
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.  相似文献   

7.
MicroRNAs (miRNAs), small non-coding molecules, regulate gene expression in response to stimuli. Lipopolysaccharide (LPS) was reported to induce the expression of miR-146 and miR-155 in HL-60. The effects of LPS and the related stimulus, tumour necrosis factor alpha (TNFα), on miRNA expression required to be further studied. Using T7-oligo ligation assay (OLA)-based miRNA array, we profiled the expression of 132 miRNAs and identified a number of TNFα-regulated miRNAs in HeLa cells, including miR-17-3p and miR-106a. TNFα induction of miR-17-3p and miR-106a was verified by Northern blot analysis with RNU48 normalization. Northern blot analysis also showed that LPS was able to induce the expression of both miR-17-3p and miR-106a in HeLa cells. Furthermore, both array assay and Northern blot analysis showed that the expression levels of miR-146 and miR-155 were either low or undetectable in HeLa cells and TNFα- and LPS-mediated induction of these two miRNAs was not found. Luciferase reporter analysis confirmed the induction of miR-17-3p and miR-106a in response to TNFα and LPS treatment in HeLa cells. These results suggested that the expression of miR-17-3p and miR-106a is regulated by TNFα and LPS in HeLa cells.  相似文献   

8.
Chronic Myeloid Leukaemia (CML) is a myeloproliferative disorder characterized by the expression of the oncoprotein, Bcr-Abl kinase. CCN3 normally functions as a negative growth regulator, but it is downregulated in CML, the mechanism of which is not known. MicroRNAs (miRNAs) are small non-coding RNAs, which negatively regulate protein translation by binding to the complimentary sequences of the 3′ UTR of messenger RNAs. Deregulated miRNA expression has emerged as a hallmark of cancer. In CML, BCR-ABL upregulates oncogenic miRNAs and downregulates tumour suppressor miRNAs favouring leukaemic transformation. We report here that the downregulation of CCN3 in CML is mediated by BCR-ABL dependent miRNAs. Using the CML cell line K562, we profiled miRNAs, which are BCR-ABL dependent by transfecting K562 cells with anti-BCR-ABL siRNA. MiRNA expression levels were quantified using the Taqman Low Density miRNA array platform. From the miRNA target prediction databases we identified miRNAs that could potentially bind to CCN3 mRNA and reduce expression. Of these, miR-130a, miR-130b, miR-148a, miR-212 and miR-425-5p were significantly reduced on BCR-ABL knockdown, with both miR-130a and miR-130b decreasing the most within 24 h of siRNA treatment. Transfection of mature sequences of miR-130a and miR-130b individually into BCR-ABL negative HL60 cells resulted in a decrease of both CCN3 mRNA and protein. The reduction in CCN3 was greatest with overexpression of miR-130a whereas miR-130b overexpression resulted only in marginal repression of CCN3. This study shows that miRNAs modulate CCN3 expression. Deregulated miRNA expression initiated by BCR-ABL may be one mechanism of downregulating CCN3 whereby leukaemic cells evade negative growth regulation.  相似文献   

9.
10.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) such as gefitinib are clinically effective treatments for non-small cell lung cancer (NSCLC) patients with EGFR activating mutations. However, therapeutic effect is ultimately limited by the development of acquired TKI resistance. MicroRNAs (miRNAs) represent a category of small non-coding RNAs commonly deregulated in human malignancies. The aim of this study was to investigate the role of miRNAs in gefitinib resistance. We established a gefitinib-resistant cell model (PC9GR) by continually exposing PC9 NSCLC cells to gefitinib for 6 months. MiRNA microarray screening revealed miR-138-5p showed the greatest downregulation in PC9GR cells. Re-expression of miR-138-5p was sufficient to sensitize PC9GR cells and another gefitinib-resistant NSCLC cell line, H1975, to gefitinib. Bioinformatics analysis and luciferase reporter assay showed that G protein-coupled receptor124 (GPR124) was a direct target of miR-138-5p. Experimental validation demonstrated that expression of GPR124 was suppressed by miR-138-5p on protein and mRNA levels in NSCLC cells. Furthermore, we observed an inverse correlation between the expression of miR-138-5p and GPR124 in lung adenocarcinoma specimens. Knockdown of GPR124 mimicked the effects of miR-138-5p on the sensitivity to gefitinib. Collectively, our results suggest that downregulation of miR-138-5p contributes to gefitinib resistance and that restoration of miR-138-5p or inhibition GPR124 might serve as potential therapeutic approach for overcoming NSCLC gefitinib resistance.  相似文献   

11.
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Dysregulation of miRNAs is common in sepsis. Through microRNA microarray and qRT-PCR we found that the levels of miR-27a, miR-153 and miR-143 are up regulated, while let-7a, miR-218 and miR-129-5p are down regulated in lungs of septic mice. Knocking down of miR-27a down regulates expression levels of TNF-α and IL-6 significantly via reducing the phosphorylation level of NF-κB p65 and inhibiting its DNA binding activity. Furthermore, neutralisation of miR-27a up regulates PPARγ level, down regulates TNF-α expression, relieves pulmonary inflammation and promotes survival of septic mice, which demonstrates that miR-27a plays an important role in regulating inflammatory response in sepsis and provides a potential target for clinical sepsis research and treatment.  相似文献   

12.
BackgroundDrug resistance is an important cause of death for most patients with chronic myeloid leukemia (CML). The bone marrow microenvironment is believed to be mainly responsible for resistance to BCR-ABL tyrosine kinase inhibitors. The mechanism involved, however, is still unclear.MethodsBioinformatic analysis from GEO database of AKR1C3 was utilized to identify the AKR1C3 expression in CML cells under bone marrow microenvironment. Western blot and qPCR were performed to detect the AKR1C3 expression in two CML cell lines K562 and KU812 cultured +/‐ bone microenvironment derived stromal cells. CCK-8, soft agar colony assay, and Annexin V/PI assay were performed to detect the sensitivity of CML cells (K562 and KU812) to Imatinib under a gain of or loss of function of AKR1C3 treatment. The CML murine model intravenous inoculated with K562-OE-vector and K562-OE-AKR1C3 cells were established to estimate the effect of AKR1C3 inhibitor Indomethacin on Imatinib resistance. The bioinformatic analysis of miRNA databases was used to predict the potential miRNAs targeting AKR1C3. And the luciferase assay was utilized to validate the target relationship between miR-379-5p and AKR1C3. And, the soft agar colony assay and Annexin V/PI were used to validate the effect of miR-379-5p in AKR1C3 induced Imatinib resistance.ResultsIn present study, we investigated AKR1C3 was highly expressed in CML under bone marrow microenvironment. AKR1C3 decreased Imatinib activity in K562 and KU812 cells, while inhibition of AKR1C3 could enhance Imatinib sensitivity in vitro study. Furthermore, murine model results showed combination use of AKR1C3 inhibitor Indomethacin effectively prolong mice survival, indicating that AKR1C3 is a promising target to enhance Imatinib treatment. Mechanically, AKR1C3 was found to be suppressed by miR-379-5p, which was down-expression in bone marrow microenvironment. Besides, we found miR-379-5p could bind AKR1C3 3’UTR but not degrade its mRNA level. Further, gain of miR-379-5p rescued the imatinib resistance induced by AKR1C3 overexpression in CML cells.ConclusionsAltogether, our study identifies a novel signaling regulation of miR-379-5p/AKR1C3/EKR axis in regulating IM resistance in CML cell, and provides a scientific base for exploring AKR1C3 as a biomarker in impeding IM resistance in CML.  相似文献   

13.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

14.
15.
Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3’-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.  相似文献   

16.
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS: Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.  相似文献   

17.
Wong KY  So CC  Loong F  Chung LP  Lam WW  Liang R  Li GK  Jin DY  Chim CS 《PloS one》2011,6(4):e19027
miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2'-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study.  相似文献   

18.
Non- small- cell lung cancer (NSCLC) is one of the most leading causes of cancer-related deaths worldwide. Paclitaxel based combination therapies have long been used as a standard treatment in aggressive NSCLCs. But paclitaxel resistance has emerged as a major clinical problem in combating non-small-cell lung cancer and autophagy is one of the important mechanisms involved in this phenomenon. In this study, we used microRNA (miRNA) arrays to screen differentially expressed miRNAs between paclitaxel sensitive lung cancer cells A549 and its paclitaxel-resistant cell variant (A549-T24). We identified miR-17-5p was one of most significantly downregulated miRNAs in paclitaxel-resistant lung cancer cells compared to paclitaxel sensitive parental cells. We found that overexpression of miR-17-5p sensitized paclitaxel resistant lung cancer cells to paclitaxel induced apoptotic cell death. Moreover, in this report we demonstrated that miR-17-5p directly binds to the 3′-UTR of beclin 1 gene, one of the most important autophagy modulator. Overexpression of miR-17-5p into paclitaxel resistant lung cancer cells reduced beclin1 expression and a concordant decease in cellular autophagy. We also observed similar results in another paclitaxel resistant lung adenosquamous carcinoma cells (H596-TxR). Our results indicated that paclitaxel resistance of lung cancer is associated with downregulation of miR-17-5p expression which might cause upregulation of BECN1 expression.  相似文献   

19.
Prostate cancer-related deaths are mostly caused by metastasis, which indicates the importance of identifying clinical prognostic biomarkers. In this study, we evaluated the expression profile of exosomal microRNAs (miRNAs) derived from metastatic prostate cancer (mPCa) cell lines (LNCaP and PC-3). miRNA signatures in exosomes and cells were evaluated by miRNA microarray analysis. Fourteen miRNAs were identified as candidates for specific noninvasive biomarkers. The expression of five miRNAs was validated using RT-qPCR, which confirmed that miR-205-5p, miR-148a-3p, miR-125b-5p, miR-183-5p, and miR-425-5p were differentially expressed in mPCa exosomes. Bioinformatic analyses showed that miR-425-5p was associated with residual tumor, pathologic T and N stages, and TP53 status in PCa samples. Gene ontology analysis of negatively correlated and predicted targeted genes showed enrichment of genes related to bone development pathways. The LinkedOmics database indicated that the potential target HSPB8 has a significant negative correlation with miR-425-5p. In conclusion, this study identified a panel of exosomal miRNAs with potential value as prognostic biomarkers for prostate cancer.  相似文献   

20.
本研究旨在阐明猪miR-331-3p对细胞增殖的影响,探讨其对细胞增殖的作用机制首先构建了miR-331-3p的过表达载体pcDNA 3.1 (+)-miR-331-3p,并将将PK15细胞分为4组,分别为实验组、实验组对照组、抑制剂组和抑制剂对照组。实验组和对照组分别转染pcDNA 3.1(+)-miR-331-3p和pcDNA 3.1(+)。抑制剂组和抑制剂对照组分别转染miR-331-3p Inhibitor和miR-331-3p阴性对照(miR-331-3p NC)。通过在各组添加CCK-8试剂绘制细胞增殖曲线,并使用PI染色检测细胞所处周期比例。同时,利用实时荧光定量PCR(Quantitative real-time PCR,qPCR)检测生长抑制蛋白家族成员5 (Inhibitor of growth family member 5,ING5)、细胞周期蛋白依赖性激酶2 (Cyclin dependent kinase 2,CDK2)、细胞周期蛋白依赖性激酶3 (Cyclin dependent kinase 3,CDK3)、细胞周期蛋白依赖性激酶4 (Cyclin dependent kinase 4,CDK4)、细胞周期蛋白B (Cyclin B)和细胞周期蛋白依赖性激酶抑制剂1A(Cyclindependentkinaseinhibitor1A,CDKN1A)的表达变化。结果表明,实验组miR-331-3p表达量显著升高,细胞增殖曲线表明48 h和72 h时细胞数目均呈现出实验组实验对照组和抑制剂对照组抑制剂组的趋势(P0.05)。与实验对照组相比,实验组处于G0/G1期的细胞比例下调,S期和G2/M细胞的比例上调,抑制剂对照组趋势与之相反;同时,实验组中与促进增殖的基因CDK2、CDK3、CDK4和CyclinB的mRNA表达水平均显著升高,而抑制增殖的基因ING5和CDKN1A均表现出显著下降的趋势。本研究成功构建了miR-331-3p过表达载体,且发现miR-331-3p具有促进猪肾上皮细胞增殖的能力,研究结果为深入研究miR-331-3p在猪生长发育中的作用机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号