首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes.  相似文献   

2.
Leptin is a pleiotropic hormone primarily secreted by adipocytes. A high density of functional Leptin receptors has been reported to be expressed in the hippocampus and other cortical regions of the brain, the physiological significance of which has not been explored extensively. Alzheimer’s disease (AD) is marked by impaired brain metabolism with decreased glucose utilization in those regions which often precede pathological changes. Recent epidemiological studies suggest that plasma Leptin is protective against AD. Specifically, elderly with plasma Leptin levels in the lowest quartile were found to be four times more likely to develop AD than those in the highest quartile. We have previously reported that Leptin modulates AD pathological pathways in vitro through a mechanism involving the energy sensor, AMP-activated protein kinase (AMPK). To this end, we investigated the extent to which activation of AMPK as well as another class of sensors linking energy availability to cellular metabolism, the sirtuins (SIRT), mediate Leptin’s biological activity. Leptin directly activated neuronal AMPK and SIRT in cell lines. Additionally, the ability of Leptin to reduce tau phosphorylation and β-amyloid production was sensitive to the AMPK and sirtuin inhibitors, compound C and nicotinamide, respectively. These findings implicate that Leptin normally acts as a signal for energy homeostasis in neurons. Perhaps Leptin deficiency in AD contributes to a neuronal imbalance in handling energy requirements, leading to higher Aβ and phospho-tau, which can be restored by replenishing low Leptin levels. This may also be a legitimate strategy for therapy.  相似文献   

3.
Beta amyloid (βA) plays a central role in the pathogenesis of the most common and devastating neurodegenerative disorder, Alzheimer's disease (AD). The mechanisms of βA neurotoxicity remain controversial, but include dysregulation of calcium homeostasis and oxidative stress. A large body of data suggest that cholesterol plays a significant role in AD. In mixed cultures containing hippocampal neurons and astrocytes, we have shown that neurotoxic βA peptides (1-42 and 25-35) cause sporadic cytosolic calcium ([Ca(2+) ](c) ) signals in astrocytes but not in neurons, initiating a cascade that ends in neuronal death. We now show, using the cholesterol-sensitive fluorescent probe, Filipin, that membrane cholesterol is significantly higher in astrocytes than in neurons and mediates the selective response of astrocytes to βA. Thus, lowering [cholesterol] using mevastatin, methyl-β-cyclodextrin or filipin prevented the βA-induced [Ca(2+) ](c) signals, while increased membrane [cholesterol] increased βA-induced [Ca(2+) ](c) signals in both neurons and astrocytes. Addition of βA to lipid bilayers caused the appearance of a conductance that was significantly higher in membranes containing cholesterol. Increasing membrane [cholesterol] significantly increased βA-induced neuronal and astrocytic death. We conclude that a high membrane [cholesterol] promotes βA incorporation into membranes and increased [Ca(2+) ](c) leading to cell death.  相似文献   

4.
Wojda U  Salinska E  Kuznicki J 《IUBMB life》2008,60(9):575-590
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.  相似文献   

5.
Glancy B  Balaban RS 《Biochemistry》2012,51(14):2959-2973
Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca(2+) ion membrane gradients makes Ca(2+) signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca(2+) regulates many cellular ATP-consuming reactions such as muscle contraction, exocytosis, biosynthesis, and neuronal signaling. Thus, Ca(2+) becomes a logical candidate as a signaling molecule for modulating ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca(2+) gradient across their inner membrane, providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial Ca(2+) concentrations, identification of transport mechanisms, and the proximity of mitochondria to Ca(2+) release sites further supports the notion that Ca(2+) can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca(2+) plays a role in the regulation of ATP generation and potentially contributes to the orchestration of cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca(2+), which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca(2+) on mitochondrial energy conversion. Numerous noninvasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption, and workloads suggest significant effects of Ca(2+) on other elements of NADH generation as well as downstream elements of oxidative phosphorylation, including the F(1)F(O)-ATPase and the cytochrome chain. These other potential elements of Ca(2+) modification of mitochondrial energy conversion will be the focus of this review. Though most specific molecular mechanisms have yet to be elucidated, it is clear that Ca(2+) provides a balanced activation of mitochondrial energy metabolism that exceeds the alteration of dehydrogenases alone.  相似文献   

6.
Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging – the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase ( HMGCR ) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR , a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD.  相似文献   

7.
An increase in the cytoplasmic-free Ca(2+) concentration mediates cellular responses to environmental signals that influence a range of processes, including gene expression, motility, secretion of hormones and neurotransmitters, changes in energy metabolism, and apoptosis. Mitochondria play important roles in cellular Ca(2+) homeostasis and signaling, but the roles of specific mitochondrial proteins in these processes are unknown. Uncoupling proteins (UCPs) are a family of proteins located in the inner mitochondrial membrane that can dissociate oxidative phosphorylation from respiration, thereby promoting heat production and decreasing oxyradical production. Here we show that UCP4, a neuronal UCP, influences store-operated Ca(2+) entry, a process in which depletion of endoplasmic reticulum Ca(2+) stores triggers Ca(2+) influx through plasma membrane "store-operated" channels. PC12 neural cells expressing human UCP4 exhibit reduced Ca(2+) entry in response to thapsigargin-induced endoplasmic reticulum Ca(2+) store depletion. The elevations of cytoplasmic and intramitochondrial Ca(2+) concentrations and mitochondrial oxidative stress induced by thapsigargin were attenuated in cells expressing UCP4. The stabilization of Ca(2+) homeostasis and preservation of mitochondrial function by UCP4 was correlated with reduced mitochondrial reactive oxygen species generation, oxidative stress, and Gadd153 up-regulation and increased resistance of the cells to death. Reduced Ca(2+)-dependent cytosolic phospholipase A2 activation and oxidative metabolism of arachidonic acid also contributed to the stabilization of mitochondrial function in cells expressing human UCP4. These findings demonstrate that UCP4 can regulate cellular Ca(2+) homeostasis, suggesting that UCPs may play roles in modulating Ca(2+) signaling in physiological and pathological conditions.  相似文献   

8.
AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O(2)) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKβ abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKβ.  相似文献   

9.
Diabetes mellitus, a debilitating chronic disease, affects ~100?million people. Peripheral neuropathy is one of the most common early complications of diabetes in ~66?% of these patients. Altered Ca(2+) handling and Ca(2+) signaling were detected in a huge variety of preparations isolated from animals with experimentally induced type 1 and 2 diabetes as well as patients suffering from the disease. We reviewed the role of Ca(2+) signaling through cation channels and oxidative stress on diabetic neuropathic pain in sensory neurons. The pathogenesis of diabetic neuropathy involves the polyol pathway, advanced glycation end products, oxidative stress, protein kinase C activation, neurotrophism, and hypoxia. Experimental studies with respect to oxidative stress and Ca(2+) signaling, inhibitor roles of antioxidants in diabetic neuropathic pain are also summarized in the review. We hypothesize that deficits in insulin, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca(2+) homeostasis and oxidative stress and associated mitochondrial dysfunction. The transient receptor potential channels are a large family of proteins with six main subfamilies. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging in diabetic neuropathic pain and it seems that the TRPC, TRPM and TRPV groups are mostly responsible from diabetic neuropathic pain. In conclusion, the accumulating evidence implicating Ca(2+) dysregulation and over production of oxidative stress products in diabetic neuropathic pains, along with recent advances in understanding of genetic variations in cation channels such as TRP channels, makes modulation of neuronal Ca(2+) handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many diabetic neuropathies.  相似文献   

10.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.Key words: AMPK, energy, neuron, brain, metabolism, glucose, neurodegenerative disease, cell death, neural development, polarization  相似文献   

11.
12.
13.
14.
阿尔茨海默病(Alzheimer’s disease,AD)是一种以进行性认知功能减退为特征的神经退行性疾病。发病的确切机制尚未完全清楚。目前认为胰岛素抵抗与胰岛素信号系统受损是加速AD发病的危险因素,胰岛素降解酶(insulin-degrading enzyme,IDE)在糖代谢异常促使AD发病的过程中发挥重要的作用。除调节β淀粉样蛋白降解和清除之外,还可能通过调节tau蛋白磷酸化水平,协同载脂蛋白Ee4(ApoEe4)及影响胰岛素信号传导等参与AD的发病机制。本文就IDE生物学特性及在AD发病机制中的作用作一综述。  相似文献   

15.
Atherosclerosis is characterized by the accumulation of lipids and deposition of fibrous elements in the vascular wall, which is the primary cause of cardiovascular diseases. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism that regulates multiple physiological processes, including lipid and glucose metabolism and the normalization of energy imbalances. Overwhelming evidence indicates that AMPK activation markedly attenuates atherosclerosis development. Autophagy inhibits cell apoptosis and inflammation and promotes cholesterol efflux and efferocytosis. Physiological autophagy is essential for maintaining normal cardiovascular function. Increasing evidence demonstrates that autophagy occurs in developing atherosclerotic plaques. Emerging evidence indicates that AMPK regulates autophagy via a downstream signaling pathway. The complex relationship between AMPK and autophagy has attracted the attention of many researchers because of this close relationship to atherosclerosis development. This review demonstrates the role of AMPK and autophagy in atherosclerosis. An improved understanding of this interrelationship will create novel preventive and therapeutic strategies for atherosclerosis.  相似文献   

16.
Recent studies associate cholesterol excess and atherosclerosis with inflammation. The link between these processes is not understood, but cholesterol is an important component of lipid rafts. Rafts are thought to concentrate membrane signaling molecules and thus regulate cell signaling through G protein-coupled pathways. We used methyl beta-cyclodextrin to deplete cholesterol from polymorphonuclear neutrophil (PMN) rafts and thus study the effects of raft disruption on G protein-coupled Ca(2+) mobilization. Methyl beta-cyclodextrin had no effect on Ca(2+) store depletion by the G protein-coupled agonists platelet-activating factor or fMLP, but abolished agonist-stimulated Ca(2+) entry. Free cholesterol at very low concentrations regulated Ca(2+) entry into PMN via nonspecific Ca(2+) channels in a biphasic fashion. The specificity of cholesterol regulation for Ca(2+) entry was confirmed using thapsigargin studies. Responses to cholesterol appear physiologic because they regulate respiratory burst in a proportional biphasic fashion. Investigating further, we found that free cholesterol accumulated in PMN lipid raft fractions, promoting formation and polarization of membrane rafts. Finally, the transient receptor potential calcium channel protein TRPC1 redistributed to raft fractions in response to cholesterol. The uniformly biphasic relationships between cholesterol availability, Ca(2+) signaling and respiratory burst suggest that Ca(2+) influx and PMN activation are regulated by the quantitative relationships between cholesterol and other environmental lipid raft components. The association between symptomatic cholesterol excess and inflammation may therefore in part reflect free cholesterol- dependent changes in lipid raft structure that regulate immune cell Ca(2+) entry. Ca(2+) entry-dependent responses in other cell types may also reflect cholesterol bioavailability and lipid incorporation into rafts.  相似文献   

17.
Neuronal and glial calcium signaling in Alzheimer's disease   总被引:25,自引:0,他引:25  
Mattson MP  Chan SL 《Cell calcium》2003,34(4-5):385-397
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.  相似文献   

18.
Energy depletion activates AMP-activated protein kinase (AMPK) and inhibits cell growth via TSC2-dependent suppression of mTORC1 signaling. Long term energy depletion also induces apoptosis by mechanisms that are not well understood to date. Here we show that AMPK, activated by energy depletion, inhibited cell survival by binding to and phosphorylating IRS-1 at Ser-794. Phosphorylation of IRS-1 at this site inhibited phosphatidylinositol 3-kinase/Akt signaling, suppressed the mitochondrial membrane potential, and promoted apoptosis. Of the treatments promoting energy depletion, glucose deprivation, hypoxia, and inhibition of ATP synthesis in the mitochondria stimulated phosphorylation of IRS-1 at Ser-794 via an LKB1/AMPK-dependent manner, whereas oxidative stress and 2-deoxyglucose stimulated phosphorylation at this site via a Ca2+/calmodulin-dependent protein kinase kinase beta/AMPK axis. These data define a novel pathway that cooperates with other adaptive mechanisms to formulate the cellular response to energy depletion.  相似文献   

19.
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.  相似文献   

20.
The Ca(2+)/calmodulin (CaM) competitive inhibitor KN-93 has previously been used to evaluate 5'-AMP-activated protein kinase (AMPK)-independent Ca(2+)-signaling to contraction-stimulated glucose uptake in muscle during intense electrical stimulation ex vivo. With the use of low-intensity tetanic contraction of mouse soleus and extensor digitorum longus (EDL) muscles ex vivo, this study demonstrates that KN-93 can potently inhibit AMPK phosphorylation and activity after 2 min but not 10 min of contraction while strongly inhibiting contraction-stimulated 2-deoxyglucose uptake at both the 2- and 10-min time points. These data suggest inhibition of Ca(2+)/CaM-dependent signaling events upstream of AMPK, the most likely candidate being the novel AMPK kinase CaM-dependent protein kinase kinase (CaMKK). CaMKK protein expression was detected in mouse skeletal muscle. Similar to KN-93, the CaMKK inhibitor STO-609 strongly reduced AMPK phosphorylation and activity at 2 min and less potently at 10 min. Pretreatment with STO-609 inhibited contraction-stimulated glucose uptake at 2 min in soleus, but not EDL, and in both muscles after 10 min. Neither KN-93 nor STO-609 inhibited 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside-stimulated glucose uptake, AMPK phosphorylation, or recombinant LKB1 activity, suggestive of an LKB1-independent effect. Finally, neither KN-93 nor STO-609 had effects on the reductions in glucose uptake seen in mice overexpressing a kinase-dead AMPK construct, indicating that the effects of KN-93 and STO-609 on glucose uptake require inhibition of AMPK activity. We propose that CaMKKs act in mouse skeletal muscle regulating AMPK phosphorylation and glucose uptake at the onset of mild tetanic contraction and that an intensity- and/or time-dependent switch occurs in the relative importance of AMPKKs during contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号