首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The culture-medium composition was optimised, on a shake-flask scale, for simultaneous production of high activities of endoglucanase and β-glucosidase by Thermoascus aurantiacus using statistical factorial designs. The optimised medium containing 40.2 g l−1 Solka Floc as the carbon source and 9 g l−1 soymeal as the organic nitrogen source yielded 1130 nkat ml−1 endoglucanase and 116 nkat ml−1β-glucosidase activities after 264 h as shake cultures. In addition, good levels of β-xylanase (3479 nkat ml−1) and low levels of filter-paper cellulase, β-xylosidase, α-l-arabinofuranosidase, β-mannanase, β-mannosidase, α-galactosidase and β-galactosidase were detected. Batch fermentation in a 5-l laboratory fermentor using the optimised medium allowed the production of 940 nkat ml−1 endoglucanase and 102 nkat ml−1β-glucosidase in 192 h. Endoglucanase and β-glucosidase showed optimum activity at pH 4.5 and pH 5, respectively, and they displayed optimum activity at 75 °C. Endoglucanase and β-glucosidase showed good stability at pH values 4–8 and 4–7, respectively, after a prolonged incubation (48 h at 50 °C). Endoglucanase had half-lives of 98 h at 70 °C and 4.1 h at 75 °C, while β-glucosidase had half-lives of 23.5 h at 70 °C and 1.7 h at 75 °C. Alkali-treated bagasse, steam-treated wheat straw, Solka floc and Sigmacell 50 were 66, 48.5, 33.5 and 14.4% hydrolysed by a crude enzyme complex of T. aurantiacus in 50 h. Received: 12 November 1999 / Accepted: 14 November 1999  相似文献   

2.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

3.
2-Hydroxybenzothiazole (OBT) is present in wastewaters from the industrial production of the rubber vulcanization accelerator 2-mercaptobenzothiazole (MBT). We have achieved the first isolation of axenic bacterial cultures capable of the degradation of OBT and growth on this substrate as the sole source of carbon, nitrogen and energy. All isolates had similar characteristics corresponding to one particular isolate, which was studied in more detail and identified as Rhodococcus rhodochrous. The strains were also capable of degrading benzothiazole (BT) but not MBT or benzothiazole-2-sulphonate (BTSO3). OBT was degraded at a concentration of up to 600 mg · l−1. BT was toxic above 300 mg · l−1. MBT inhibited OBT degradation. Growth on OBT was not significantly different at pH values of between 6.3 and 7.9 or salt concentrations between 1 % and 3 %. In shake flasks the cells clumped together, which resulted in a lower rate of oxygen transfer and slower degradation as compared to cells grown on OBT in a stirred reactor. Received: 22 August 1996 / Received revision: 29 November 1996 / Accepted: 29 November 1996  相似文献   

4.
Poly(hydroxybutyric acid) (PHB) was produced by a selectant of Azotobacter beijerinckii in media containing only organic nitrogen sources such as N substrates. The chosen compounds were casein peptone, yeast extract, casamino acids and urea, each combined with carbon substrates glucose or sucrose. The PHB was synthesized under growth-associated conditions. The concentrations amounted to more than 50% of cell dry mass on casein peptone/glucose as well as urea/glucose medium within 45 h fermentation time. Corresponding to these yields, productivities of about 0.8 g PHB l−1 h−1 were discovered. The highest values increased to 1.06 g PHB l−1 h−1 on casein peptone/glucose medium and 1.1 g PHB l−1 h−1 on yeast extract/glucose medium after a period of 20 h. It was found that oxygen limitation was essential for successful product formation, as demonstrated earlier. These data from basic research may support further investigations into the use of technical proteins from renewable sources as substrates for PHB production by a strain of A. beijerinckii. Received: 3 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

5.
β-Glucosidase is frequently used to supplement cellulase preparations for hydrolysis of cellulosic and lignocellulosic substrates in order to accelerate the conversion of cellobiose to glucose. Typically, commercial cellulase preparations are deficient in this enzyme and accumulation of cellobiose leads to product inhibition. This study evaluates the potential for recycling β-glucosidase by immobilization on a methacrylamide polymer carrier, Eupergit C. The immobilized β-glucosidase had improved stability at 65 °C, relative to the free enzyme, while the profile of activity versus pH was unchanged. Immobilization resulted in an increase in the apparent Km from 1.1 to 11 mm and an increase in Vmax from 296 to 2430 μmol mg−1 min−1. The effect of immobilized β-glucosidase on the hydrolysis of cellulosic and lignocellulosic substrates was comparable to that of the free enzyme when used at the same level of protein. Operational stability of the immobilized β-glucosidase was demonstrated during six rounds of lignocellulose hydrolysis. Received 22 August 2005; Revisions requested 20 September 2005; Revisions received 8 November 2005; Accepted 10 November 2005  相似文献   

6.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

7.
A laboratory study investigated the metabolic physiology, and response to variable periods of water and sodium supply, of two arid-zone rodents, the house mouse (Mus domesticus) and the Lakeland Downs short-tailed mouse (Leggadina lakedownensis) under controlled conditions. Fractional water fluxes for M. domesticus (24 ± 0.8%) were significantly higher than those of L. lakedownensis (17 ± 0.7%) when provided with food ad libitum. In addition, the amount of water produced by M. domesticus and by L. lakedownensis from metabolic processes (1.3 ± 0.4 ml · day−1 and 1.2 ± 0.4 ml · day−1, respectively) was insufficient to provide them with their minimum water requirement (1.4 ± 0.2 ml · day−1 and 2.0 ± 0.3 ml · day−1, respectively). For both species of rodent, evaporative water loss was lowest at 25 °C, but remained significantly higher in M. domesticus (1.1 ± 0.1 mg H2O · g−0.122 · h−1) than in L. lakedownensis (0.6 ± 0.1 mg H2O · g−0.122 · h−1). When deprived of drinking water, mice of both species initially lost body mass, but regained it within 18 days following an increase in the amount of seed consumed. Both species were capable of drinking water of variable saline concentrations up to 1 mol · l−1, and compensated for the increased sodium in the water by excreting more urine to remove the sodium. Basal metabolic rate was significantly higher in M. domesticus (3.3 ± 0.2 mg O2 · g−0.75 · h−1) than in L. lakedownensis (2.5 ± 0.1 mg O2 · g−0.75 · h−1). The study provides good evidence that water flux differences between M. domesticus and L. lakedownensis in the field are due to a requirement for more water in M. domesticus to meet their physiological and metabolic demands. Sodium fluxes were lower than those observed in free-ranging mice, whose relatively high sodium fluxes may reflect sodium associated with available food. Accepted: 16 August 1999  相似文献   

8.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

9.
The filamentous fungus Stachybotrys sp has been shown to possess a rich β-glucosidase system composed of five β-glucosidases. One of them was already purified to homogeneity and characterized. In this work, a second β-glucosidase was purified and characterized. The filamentous fungal A19 strain was fed-batch cultivated on cellulose, and its extracellular cellulases (mainly β-glucosidases) were analyzed. The purified enzyme is a monomeric protein of 78 kDa molecular weight and exhibits optimal activity at pH 6.0 and at 50°C. The kinetic parameters, K m and V max, on para-nitro-phenyl-β-d-glucopyranosid (p-NPG) as a substrate were, respectively, 1.846 ± 0.11 mM and 211 ± 0.08 μmol min−1 ml−1. One interesting feature of this enzyme is its high stability in a wide range of pH from 4 to 10. Besides its aryl β-glucosidase activity towards salicin, methylumbellypheryl-β-d-glucoside (MU-Glc), and p-NPG, it showed a true β-glucosidase activity because it splits cellobiose into two glucose monomers. This enzyme has the capacity to synthesize short oligosaccharides from cellobiose as the substrate concentration reaches 30% with a recovery of 40%. We give evidences for the involvement of a transglucosylation to synthesize cellotetraose by a sequential addition of glucose to cellotriose.  相似文献   

10.
Polyhydroxybutyrate (PHB) was produced by Ralstonia eutropha DSM 11348 (formerly Alicaligenes eutrophus) in media containing 20–30 g l−1 casein peptone or casamino acids as sole sources of nitrogen. In fermentations using media based on casein peptone, permanent growth up to a cell dry mass of 65 g l−1 was observed. PHB accumulated in cells up to 60%–80% of dry weight. The lowest yields were found in media without any trace elements or with casamino acids added only. The residual cell dry masses were limited to 10–15 g l−1 and did not contain PHB. The highest productivity amounted to 1.2 g PHB l−1 h−1. The mean molecular mass of the biopolymer was determined as 750 kDa. The proportion of polyhydroxyvalerate was less than 0.2% in PHB. The bioprocess was scaled up to a 300-l plant. During a fermentation time of 39 h the cells accumulated PHB to 78% w/w. The productivity was 0.98 g PHB l−1 h1. Received: 8 July 1998 / Accepted: 26 August 1998  相似文献   

11.
The degradation of low concentrations of 1,3-dichloro-2-propanol (1,3-DCP) and related halohydrins by whole cells and cell-free extracts of soil bacteria has been investigated. Three bacteria (strains A1, A2, A4), isolated from the same soil sample, were distinguished on the basis of cell morphology, growth kinetics and haloalcohol dehalogenase profiles. Strain A1, probably an Agrobacterium sp., dehalogenated 1,3-DCP with the highest specific activity (0.33 U mg protein−1) and also had the highest affinity for 1,3-DCP (K m, 0.1 mM). Non-growing cells of this bacterium dehalogenated low concentrations of 1,3-DCP with a first-order rate constant (k 1) of 1.13 h−1 . The presence of a non-dehalogenating bacterium, strain G1 (tentatively identified as Pseudomonas mesophilius), did not enhance the dehalogenation rate of low 1,3-DCP concentrations. However, the mixed-species consortium of strains A1 and G1 had greater stability than the mono-species culture at DCP concentrations above 1.0 gl−1. Received: 30 April 1996 / Received revision: 30 July 1996 / Accepted: 5 August 1996  相似文献   

12.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

13.
The microbial production of poly(hydroxyalkanoates) from tallow   总被引:7,自引:0,他引:7  
The bacteria Pseudomonas oleovorans, P. resinovorans, P. putida, and P. citronellolis were evaluated for their ability to grow and produce poly(hydroxyalkanoates) (PHA) using tallow free fatty acids and tallow triglyceride as carbon substrates. Tallow free fatty acids supported cell growth and PHA production for all four organisms, yielding PHA contents of 18%, 15%, 19% and 3% of their cell dry weights for P. oleovorans, P.␣resinovorans, P. putida, and P. citronellolis respectively. Only P. resinovorans, however, was able to grow and produce PHA polymer, with cells attaining a PHA content of 15% of their cell dry weight, using unhydrolyzed tallow as the substrate. Extracts from 46-h cultures of P. resinovorans were found to have a higher esterase activity (12.80 units μl−1min−1) compared to the activities found for cultures of P. oleovorans, P. citronellolis, and P. putida ( < 0.03 units μl−1min−1). Polymer repeat-unit compositions were determined by GC analysis of the β-hydroxymethyl esters of hydrolyzed PHA, and ranged in carbon-chain lengths from C4 to C14, with some mono-unsaturation in the C12 and C14 side-chains. PHA compositions were similar for the polymers obtained from all four organisms, with repeat units of chain lengths C8 and C10 predominating. Received: 16 February 1996 / Received revision: 23 May 1996 / Accepted: 10 June 1996  相似文献   

14.
Fructose and H2 were compared as electron donors for hydrogenation of carbon-carbon double bonds using Acetobacterium woodii. Caffeate was used as a model substrate. An electron donor was required and both fructose and H2 were suitable. With fructose as the donor, the K s for caffeate was 0.5 mM and the V max was 678 mmol kgdry weight −1 h−1.␣Fructose oxidation was coupled very efficiently to caffeate reduction by an alteration in the fructose fermentation so that acetate was no longer produced. Received: 24 June 1996 / Accepted: 1 July 1996  相似文献   

15.
We used tritium-labeled water to measure total body water, water influx (which approximated oxidative water production) and water efflux in free-flying tippler pigeons (Columba livia) during flights that lasted on average 4.2 h. At experimental air temperatures ranging from 18 to 27 °C, mean water efflux by evaporation and excretion [6.3 ± 1.3 (SD) ml · h−1, n = 14] exceeded water influx from oxidative water and inspired air (1.4 ± 0.7 ml · h−1, n = 14), and the birds dehydrated at 4.9 ± 0.9 ml · h−1. This was not significantly different from gravimetrically measured mass loss of 6.2 ± 2.1 g · h−1 (t = 1.902, n = 14, P>0.05). This flight-induced dehydration resulted in an increase in plasma osmolality of 4.3 ± 3.0 mosmol · kg−1 · h−1 during flights of 3–4 h. At 27 °C, the increase in plasma osmolality above pre-flight levels (ΔP osm = 7.6±4.29 mosmol · kg−1 · h−1, n = 6) was significantly higher than that at 18 °C (ΔP osm = 0.83±2.23 mosmol · kg−1 · h−1, (t = 3.43, n = 6, P < 0.05). Post-flight haematocrit values were on average 1.1% lower than pre-flight levels, suggesting plasma expansion. Water efflux values during free flight were within 9% of those in the one published field study (Gessaman et al. 1991), and within the range of values for net water loss determined from mass balance during wind tunnel experiments (Biesel and Nachtigall 1987). Our net water loss rates were substantially higher than those estimated by a simulation model (Carmi et al. 1992) suggesting some re-evaluation of the model assumptions is required. Accepted: 8 April 1997  相似文献   

16.
Removal of nitrate and phosphate ions from water, by using the thermophilic cyanobacterium Phormidium laminosum, immobilized on cellulose hollow fibres in the tubular photobioreactor at 43 °C, was studied by continuously supplying dilute growth medium for 7 days and then secondarily treated sewage (STS) for 12 days. The concentrations of NO 3 and PO3− 4 in the effluent from the dilute growth medium decreased from 5.0 mg N/l to 3.1 mg N/l, and from 0.75 mg P/l to 0.05 mg P/l respectively, after a residence time of 12 h. The concentrations of NO 3 and PO3− 4 in the effluent from STS decreased from 11.7 mg N/l to 2.0 mg N/l, and from 6.62 mg P/l to 0.02 mg P/l respectively, after a residence time of 48 h. The removal rates of nitrogenous␣and phosphate ions from STS were 0.24 and 0.11 mmol day−1 l reactor−1 respectively, under the same conditions. Although, among nitrogenous ions, nitrate and ammonium ions were efficiently removed by P.␣laminosum, the nitrite ion was released into the effluent when STS was used as influent. Treatment of water with thermophilic P. laminosum immobilized on hollow fibres thus appears to be an appropriate means for the removal of inorganic nitrogen and phosphorus from treated wastewater. Received: 15 August 1997 / Received last revision: 18 November 1997 / Accepted: 29 November 1997  相似文献   

17.
The marine photosynthetic bacterium Chromatium sp. successfully removed orthophosphate when grown phototrophically. The phosphate-uptake rate was almost constant at more than 5.0 mg- PO4 3−/l in synthetic medium. Addition of seawater causes flocculation of this strain. The successful use of seawater as an inexpensive source of magnesium could prove to be effective in the removal of photosynthetic bacterial cells from a medium. A semicontinuous culture system was used for the removal of low concentrations of phosphate and the phosphate-uptake activity of Chromatium sp. was maintained under 0.1 day−1 dilution rate. This strain was also able to remove high concentrations of phosphate from domestic sewage. Received 24 May 1996 / Received revision: 5 August 1996 / Accepted: 6 September 1996  相似文献   

18.
Bioremediation of diesel-oil-contaminated alpine soils at low temperatures   总被引:11,自引:0,他引:11  
Bioremediation of two diesel-oil-contaminated alpine subsoils, differing in soil type and bedrock, was investigated in laboratory experiments at 10 °C after supplementation with an inorganic fertilizer. Initial diesel oil contamination of 4000 mg kg−1 soil dry matter (dm) was reduced to 380–400 mg kg−1 dm after 155 days of incubation. In both soils, about 30 % of the diesel oil contamination (1200 mg kg−1 dm) was eliminated by abiotic processes. The residual decontamination (60 %–65 %) could be attributed to microbial degradation activities. In both soils, the addition of a cold-adapted diesel-oil-degrading inoculum enhanced biodegradation rates only slightly and temporarily. From C/N and N/P ratios (determined by measuring the contents of total hydrocarbons, NH4 + N, NO3 N and PO4 3− P) of soils␣it could be deduced that there was no nutrient deficiency during the whole incubation period. Soil biological activities (basal respiration and dehydrogenase activity) corresponded to the course of biodegradation activities in the soils. Received: 9 September 1996 / Accepted: 7 December 1996  相似文献   

19.
Genes encoding the mosquitocidal binary toxin of Bacillus sphaericus 2362 were introduced into Synechococcus PCC6301, a cyanobacterium that can tolerate a number of potential variations in the mosquito breeding environment, and can serve as a food source for mosquito larvae. The toxin genes, preceded by a Synechococcus rbcL promoter, were located on a mobilizable Escherichia coli Synechococcus shuttle vector, which was introduced into Synechococcus PCC6301 at frequencies of 10−5–10−7 exconjugants/recipient, depending on the selective conditions used. Recombinant Synechococcus exhibited significant toxicity against 2-day-old and 6-day-old Culex quinquefasciatus larvae, the concentration required to kill 50 % of larvae (LC50) being 2.1 × 105 and 1.3 × 105 cells/ml respectively. Mosquitocidal activity decreased tenfold after 20 generations of non-selective growth. Received: 23 July 1996 / Received revision: 11 November 1996 / Accepted: 15 November 1996  相似文献   

20.
Endo-mannanases and endo-xylanases cleave different heteromannans and xylans yielding mainly dimers and trimers of the corresponding sugars as end-products. However, in the early stages of hydrolysis, four purified mannanases and four xylanases from fungal and bacterial origin, examined in this study, showed a different pattern of released oligomers (determined up to the pentamers). Furthermore, some of these enzymes showed a preference for cleaving the polysaccharides in the middle of the chain while others acted more at the end. When the increase in the specific fluidity of mannan and xylan solutions per reducing sugar released (K v) was measured against the bleaching effect of the enzymes on softwood kraft pulp, a correlation was found. A xylanase from Penicillium simplicissimum (K v = 0.15 l mPa−1s−1g−1) and a mannanase from Sclerotium rolfsii (K v = 0.12 l mPa−1s−1g−1) applied in a O(QX)P bleaching sequence (O = oxygen delignification, X = treatment with hemicellulolytic enzymes, Q = chelation of metals, P = treatment with hydrogen peroxide in alkaline solution) gave a high brightness increase of 3.0% and 1.9% ISO respectively. A less significant brightness increase was obtained with enzymes showing lower K v values, such as a xylanase from Schizophyllum commune (Kv = 0.051  l mPa−1s−1g−1, 0.2% ISO) and a bacterial mannanase (K v = 0.061 l mPa−1s−1g−1,0.5% ISO). Received: 19 December 1996 / Received revision: 20 February 1997 / Accepted: 22 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号