首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticotropin releasing hormone (CRH) is a 41-residue hypothalamic neuropeptide that has been shown to have potent behavioral effects in animals and has been implicated in clinical disorders in man. This review focuses on those aspects of the behavioral effects of CRH related to food-associated behaviors. The effects of CRH on food intake are compared with its effects on performances maintained by food presentation, and contrasted with the effects of CRH on performances maintained by other events. The effects of CRH antagonists and drugs that interact with the behavioral effects of CRH are also reviewed, particularly with respect to their direct effects on food intake. Lastly, data assessing the effects of CRH administration on central neurotransmitter levels are presented and compared with levels seen in clinical populations. The effect of CRH on food intake seen in animals is consistent with a putative role for CRH in clinical syndromes where appetite suppression is apparent. Since some of the effects of CRH on food intake are subject to pharmacological intervention, strategies directed at peptidergic mechanisms of psychiatric disorders should be explored.  相似文献   

2.
Temperament and personality traits such as neuroticism and behavioral inhibition are prospective predictors of the onset of depression and anxiety disorders. Exposure to stress is also linked to the development of these disorders, and neuroticism and inhibition may confer or reflect sensitivity to stressors. Several lines of research have documented hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in some patients with major depression, as well as in children and non-human primates with inhibited temperaments. The present investigation tested the hypothesis that stress-reactive temperaments would be predictive of plasma adrenocorticotropin (ACTH) and cortisol concentrations in the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Sixty adults completed diagnostic interviews and questionnaires assessing the temperament domains of novelty seeking and harm avoidance and symptoms of anxiety and depression. All subjects were free of any current or past Axis I psychiatric disorder. The Dex/CRH test was performed on a separate visit. A repeated-measures general linear model (GLM) showed a main effect of harm avoidance in predicting cortisol concentrations in the test (F(1, 58)=4.86, p<.05). The GLM for novelty seeking and cortisol response also showed a main effect (F(1, 58)=5.28, p<.05). Higher cortisol concentrations were associated with higher levels of harm avoidance and lower levels of novelty seeking. A significant interaction of time with harm avoidance and novelty seeking (F(4, 53)=3.37, p<.05) revealed that participants with both high levels of harm avoidance and low levels of novelty seeking had the highest cortisol responses to the Dex/CRH test. Plasma ACTH concentrations did not differ as a function of temperament. The results indicate that temperament traits linked to sensitivity to negative stimuli are associated with greater cortisol reactivity during the Dex/CRH test. Increased adrenocortical reactivity, which previously has been linked to major depression and anxiety disorders, may contribute to the association between temperament/personality traits and these disorders.  相似文献   

3.
King BR  Smith R  Nicholson RC 《Peptides》2001,22(5):795-801
Corticotrophin-releasing hormone (CRH) is a 41 amino acid neuropeptide that is expressed in the hypothalamus and the human placenta. Placental CRH production has been linked to the determination of gestational length in the human. Although encoded by a single copy gene, CRH expression in the placenta is regulated differently to the hypothalamus. Glucocorticoids stimulate CRH promoter activity in the placenta but inhibit it's activity in the hypothalamus, via mechanisms involving different regions of the CRH promoter. We discuss how various stimuli alter CRH promoter activity and why these responses are unique to the placenta.  相似文献   

4.
B R King  R Smith  R C Nicholson 《Peptides》2001,22(11):1941-1947
Corticotrophin-releasing hormone (CRH) is a 41 amino acid neuropeptide that is expressed in the hypothalamus and the human placenta. Placental CRH production has been linked to the determination of gestational length in the human. Although encoded by a single copy gene, CRH expression in the placenta is regulated differently to the hypothalamus. Glucocorticoids stimulate CRH promoter activity in the placenta but inhibit it's activity in the hypothalamus, via mechanisms involving different regions of the CRH promoter. We discuss how various stimuli alter CRH promoter activity and why these responses are unique to the placenta.  相似文献   

5.
6.
Keck ME  Holsboer F 《Peptides》2001,22(5):835-844
Increasing evidence suggests that the neuroendocrine changes seen in psychiatric patients, especially in those suffering from affective disorders, may be causally related to the psychopathology and course of these clinical conditions. The most robustly confirmed neuroendocrine finding among psychiatric patients with affective disorders is hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) system, resulting from hyperactive hypothalamic corticotropin-releasing hormone (CRH) neurons. A large body of preclinical and clinical evidence suggests that both genetic and environmental factors contribute to the development of these HPA system abnormalities. Further, normalization of HPA system regulation was shown to be a prerequisite for favorable treatment response and stable remission among depressives. Preclinical data based on animal models including selectively bred rat lines and mouse mutants support the notion that CRH neurons are hyperactive also in neuroanatomical regions that are involved in behavioral regulation but are located outside the neuroendocrine system. This raises the question of whether more direct interventions such as CRH receptor antagonists would open a new lead in the treatment of stress-related disorders such as depression, anxiety and sleep disorders. Recent clinical observations support this possibility.  相似文献   

7.
Mitsuma T  Matsumoto Y  Tomita Y 《Life sciences》2001,69(17):1991-1998
Corticotropin releasing hormone (CRH) is a potent mediator of stress responses and stress-induced disorders. Consistent with the broad range of roles proposed for CRH, high-affinity binding sites have been found in various peripheral sites. Recently two types of CRH specific receptor have been identified. Expression of CRH receptor 1 (CRH-R1) gene has been detected in human keratinocyte, but the effects of CRH to keratinocytes are still unknown. We tested whether CRH induced keratinocyte proliferation via interaction with CRH R1. Expression of CRH-R1 mRNA in the human keratinocyte and HSC-2, keratinocyte cell line, was analyzed by RT-PCR. The human keratinocyte and HSC-2 were recognized to have CRH-R1 expression ability. CRH signal is transduced into a cAMP-activated metabolic pathway via interaction with CRH-R1. Radioimmunoassay indicated that CRH binds to CRH receptor in HSC-2 cell when activating the metabolic pathway. Using thymidine incorporation assay, CRH had proliferative effect to HSC-2. This study suggests that CRH induces the proliferation of keratinocytes via interation with CRH receptors.  相似文献   

8.
Corticotropin-releasing hormone (CRH) overproduction and serotonergic dysfunction have both been implicated in a range of psychiatric disorders, such as anxiety and depression, and several studies have shown interactions between these two neurotransmitter systems. In this study, we investigated the effects of CRH challenge on hypothalamo-pituitary-adrenal (HPA) axis activity in female transgenic mice overproducing CRH. Furthermore, the effects of mild stress on HPA axis activity and body temperature were investigated in these mice. Pre- and post-synaptic 5-HT1A receptor function were studied by monitoring body temperature and plasma corticosterone levels after challenge with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propyl-amino)-tetralin (8-OH-DPAT). Hypothermia in response to 8-OH-DPAT treatment did not differ between transgenic and wild type mice, indicating unaltered somatodendritic 5-HT1A autoreceptor function in mice overproducing CRH. In wild type mice 8-OH-DPAT increased plasma corticosterone levels, but not in transgenic animals. CRH injection, however, increased corticosterone levels in both groups. These data suggest desensitization of post-synaptic, but not pre-synaptic, 5-HT1A receptors in mice overproducing CRH. These findings resemble those seen in depressed patients following 5-HT1A challenge, which is in accord with the hypothesized role of CRH in the pathogenesis of depression.  相似文献   

9.
Corticotropin-releasing hormone (CRH) plays a central role in the adaptation of the body to stress. CRH integrates the endocrine, autonomic and behavioural responses to stress acting as a secretagogue within the line of the hypothalamic pituitary adrenocortical (HPA) system and as a neurotransmitter modulating synaptic transmission in the central nervous system. Accumulating evidence suggests that the neuroendocrine and behavioural symptoms observed in patients suffering from major depression are at least in part linked to a hyperactivity of the CRH system. Genetic modifications of the CRH system by conventional and conditional gene targeting strategies in the mouse allowed us to study the endogenous mechanisms underlying HPA system regulation and CRH-related neuronal circuitries involved in pathways mediating anxiety and stress-related behaviour.  相似文献   

10.
11.
Corticotropin-releasing hormone (CRH) has been shown to be a central mediator for most, if not all, stress-induced responses. Since stressful stimuli may decrease hypothalamic tuberoinfundibular and tuberohypophysial dopaminergic neuronal activities, we aimed to determine whether CRH is involved. Using central administration of various doses of ovine CRH (oCRH; 1, 3 and 10 µg/rat) into the lateral cerebroventricle of either male or female rats, the neurochemical changes in various parts of the central nervous system, including the hypothalamus, were determined by high-performance liquid chromatography at various times after the injection (30, 60, 120 and 240 min). The concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxy-phenylethyleneglycol (MHPG), two major metabolites of dopamine and norepinephrine, respectively, in discrete brain regions were used as indices for catecholaminergic neuron activity. Plasma corticosterone levels increased significantly after all doses of oCRH and at all time points studied. oCRH also exerted significant stimulatory effects on noradrenergic neuron terminals in the frontal cortex, and on dopaminergic neuron terminals in the nucleus accumbens, hypothalamic paraventricular and periventricular nuclei, and intermediate pituitary lobe. Dopaminergic neuron terminals in the median eminence and the neural lobe of the pituitary, however, were not affected. There was no major difference in the responses between male and female rats. We conclude that CRH has a differential effect on central catecholaminergic neurons.  相似文献   

12.
The wide distribution of corticotrophin-releasing hormone (CRH) receptors in brain and periphery appear to be important in integrating the responses of the brain, endocrine and immune systems to physiological, psychological and immunological stimuli. The type 1 receptors are highly expressed throughout the cerebral cortex, a region involved in cognitive function and modulation of stress responses, where they are coupled to the adenylyl cyclase system. Using techniques that analyse receptor-mediated guanine-nucleotide binding protein (G-proteins) activation, we recently demonstrated that expressed type 1alpha CRH receptors are capable of activating multiple G-proteins, which suggests that CRH can regulate multiple signalling pathways. In an effort to characterize the intracellular signals generated by CRH in the rat cerebral cortex we sought to identify G-proteins activated by CRH in a physiological membrane environment. Rat cerebral cortical membrane suspensions were analysed for the ability of CRH to stimulate incorporation of [alpha-32P]-GTP-gamma-azidoanilide to various G-protein alpha-chains. Our results show that CRH receptors are coupled to and activate at least five different G-proteins (Gs, Gi, Gq/11, Go and Gz) with subsequent stimulation of at least two intracellular signalling cascades. In addition, the photoaffinity experiments indicated that the CRH receptors preferentially activate the 45 kDa form of the Gs alpha-protein. This data may help elucidate the intracellular signalling pathways mediating the multiple actions of CRH especially under different physiological conditions.  相似文献   

13.

Background  

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms.  相似文献   

14.
Kasckow JW  Baker D  Geracioti TD 《Peptides》2001,22(5):845-851
Corticotropin-releasing hormone (CRH) has been implicated in the regulation of a wide range of behaviors including arousal, motor function, feeding, and reproduction. Because depressed patients are often hypercortisolemic and intracerebroventricular administration of CRH to experimental animals produces a syndrome reminiscent of depression, dysregulation of this compound has been suggested to be involved in the pathogenesis of depressive and anxiety disorders. Studies of cerebrospinal fluid CRH levels and clinical neuroendocrine tests in patients with anxiety and affective disorders have supported this hypothesis. This review discusses these neuroendocrine findings in melancholic and atypical depression as well as post-traumatic stress disorder (PTSD). Overall, the data suggest that melancholic depression is characterized by hyperactive central CRH systems with overactivity of the pituitary-adrenal (HPA) axis. On the other hand, atypical depression is characterized by hypoactive central CRH systems and accompanying underactivity of the hypothalamic-pituitary-adrenal axis. Furthermore, the neuroendocrinology of PTSD appears to be unique, in that patients have hyperactive central CRH systems with underactivity of the pituitary-adrenal axis.  相似文献   

15.
Peripheral corticotropin-releasing hormone (CRH) is thought to have proinflammatory effects. We used the model of experimental autoimmune encephalomyelitis (EAE) to study the role of CRH in an immune-mediated disease. We showed that CRH-deficient mice are resistant to EAE, with a decrease in clinical score as well as decreased cellular infiltration in the CNS. Furthermore, Ag-specific responses of primed T cells as well as anti-CD3/anti-CD28 TCR costimulation were decreased in crh(-/-) mice with decreased production of Th1 cytokines and increased production of Th2 cytokines. Wild-type mice treated in vivo with a CRH antagonist showed a decrease in IFN-gamma production by primed T cells in vitro. This effect of CRH is independent of its ability to increase corticosterone production, because adrenalectomized wild-type mice had similar disease course and severity as control mice. We found that IkappaBalpha phosphorylation induced by TCR cross-linking was decreased in crh(-/-) T cells. We conclude that peripheral CRH exerts a proinflammatory effect in EAE with a selective increase in Th1-type responses. These findings have implications for the treatment of Th1-mediated diseases such as multiple sclerosis.  相似文献   

16.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

17.
Corticoliberin (corticotrophin-releasing hormone, CRH) regulated of endocrine, autonomic and immune response to stress and is a mediator of anxiety in behavioral response. We studied the effect of corticoliberin on neuronal activity after microstimulation of olfactory cortex slices. Wistar rats strain were selected in T-maze labyrinth according to active and passive strategy of the adaptive behavior. The rats were exposed to water-immersions stress and after 10 days from their brain the olfactory cortex slices were prepared. The evoked focal potential were registered after perfusion with 0.1 mcM of CRH. It was revealed that in 60% of the slices of the active rats CRH induced the small decrease of excitatory amplitude but the increase amplitude inhibitory postsynaptic potential. In 40%, CRH induced the depression of synaptic transmission. Addition of CRH in incubation medium of the passive rat slices related, blockade the synaptic transmission.  相似文献   

18.
19.
The effect of PGE2 on ACTH and cortisol responses to CRH was studied in 6 healthy men who received CRH i.v. during either saline or PGE2 infusions which were started 60 min. before testing. ACTH and cortisol responses to CRH were greater during PGE2 infusion compared to the control study. The results indicate that PGE2 positively modulates CRH-induced ACTH secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号