首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varga L  Pinke O  Müller G  Kovács B  Korom E  Szabó G  Soller M 《Genetics》2005,169(1):489-493
A novel method for mapping a modifier gene that is syntenic to its major gene was used to map a male-sex-limited modifier of the expressivity of the Compact phenotype in the myostatin mutant (Mstn(Cmpt-dl1Abc)) Compact mouse. The modifier was mapped to the general region of D1Mit262, 40 cM distal to Mstn on chromosome 1. Myogenin, a postulated downstream target of myostatin, maps to the same region.  相似文献   

2.
Mice homozygous for the hypomorphic allele Eya1 ( bor ) exhibit cochlear aplasia, with associated deafness, and renal hypoplasia, similar to Branchio-Oto-Renal syndrome (BOR) in humans. Although much is known about the genetics of the disease, little is known about the factors that modify its phenotypic expression. We have recently detailed two modifier loci (Mead1 and Mead2) in a C3HeB/FeJ-Eya1 ( bor/+ ) x C57BL/6 J intercross that suppress the ear-related phenotypes in our hypomorphic mutants. In this study we report corroborating evidence for our initial finding with the identification of two modifier loci mapping to the same region in CAST/EiJ and BALB/cJ. Furthermore, we describe an additional locus (Mead3) on chromosome 19 in CAST/EiJ, within which the previously cloned suppressor Nxf1 resides. The suppression effect on cochlear coiling was studied on congenic line(s) for each protective allele. The penetrance and suppressor strength of these alleles vary by strain and locus. Eya1 ( bor/bor ) hypomorphs, when homozygous for each of the three protective alleles (CAST/EiJ, C57BL/6 J, or BALB/cJ) at the Mead1 or Mead2 locus, exhibit completely penetrant suppression of cochlear agenesis. At the Mead1 locus, the C57BL/6 J and BALB/cJ alleles have comparable strengths. At the Mead2 locus, the C57BL/6 J and CAST/EiJ alleles have comparable strengths. In contrast, mice with genotype Eya1 ( bor/bor )Mead3(CAST/CAST) exhibit incomplete penetrance (50%) and a wide range of cochlear coiling (1/4-1(1/2) turns). The identification of these additional modifier alleles could provide crucial clues for evaluating the candidate genes.  相似文献   

3.
Oligonucleotide primers of random sequence that were 12 bases in length, 58% in GC content, and lacking internal palindromes were designed. By random amplified polymorphic DNA (RAPD) PCR, these primers were used to survey for DNA variations between the progenitors of the mouse AXB and BXA recombinant inbred sets (A/J and C57BL/6J). We identified 17 DNA variants detected by 10 primers. Map positions for these variants were determined by comparing their strain distribution patterns in the AXB, BXA recombinant inbred sets with strain distribution patterns of previously published loci. When necessary, BXD and NXSM recombinant inbred sets were also used. These 17 new loci mapped to 12 chromosomes. The 10 primers were also used to survey 20 inbred mouse strains including the progenitors of other recombinant inbred sets and four mouse strains recently inbred from the wild (CAST/Ei, MOLF/Ei, PERA/Ei, and SPRET/Ei).  相似文献   

4.
Davis RC  Jin A  Rosales M  Yu S  Xia X  Ranola K  Schadt EE  Lusis AJ 《Genomics》2007,90(3):306-313
We previously reported the construction of two sets of heterozygous congenic strains spanning the mouse genome. For both sets, C57BL/6J was employed as the background strain while DNA from either DBA/2 or CAST/Ei was introgressed to form the congenic region. We have subsequently bred most of these strains to produce homozygous breeding stocks. Here, we report the characterization of the strain set based on CAST/Ei. CAST/Ei is the most genetically distant strain within the Mus mus species and many trait variations relevant to common diseases have been identified in CAST/Ei mice. Despite breeding difficulties for some congenic regions, presumably due to incompatible allelic variations between CAST/Ei and C57BL/6, the resulting congenic strains cover about 80% of the autosomal chromosomes and will be useful as a resource for the further analysis of quantitative trait loci between the strains.  相似文献   

5.
 The recessive male sterility and histoincompatibility mutation (mshi) arose spontaneously in the standard inbred mouse strain BALB/cBy. In addition to generating sterility in homozygous males, mshi controls the loss of a minor histocompatibility antigen designated H-mshi. To determine whether the H-mshi antigen normally expressed by the BALB/cBy strain (H-mshic) is the same as or different from the antigen (H-mshix) expressed by the standard inbred C57BL/6J strain or the wild-derived CAST/Ei and SPRET/Ei strains, animals heterozygous for the mutant antigen-loss allele (H-mshi ) and H-mshi x were grafted with tail skin from BALB/cBy mice. The long-term retention of grafts by these hosts indicates that the H-mshi antigen encoded by the BALB/cBy, C57BL/6J, CAST/Ei, and SPRET/Ei strains is histogenically identical. Conservation of this minor histocompatibility antigen among these evolutionarily diverse strains suggests that H-mshi encodes a functionally important cellular product(s). Received: 1 August 1998 / Accepted: 26 October 1998  相似文献   

6.
A panel of 78 backcross progeny, BALB/cJ x (BALB/cJ x CAST/Ei)F1, was used to map the gene encoding anti-Müllerian hormone (Amh), also called Müllerian inhibiting substance, to mouse Chromosome 10 (MMU10). This analysis identified a new region of linkage homology between human Chromosome 19p (HSA 19p) and MMU10 and localized an apparent recombinational hot spot in (C57BL/6J x Mus spretus)F1 females [compared with (BALB/cJ x CAST/Ei)F1 males] to the interval between phenylalanine hydroxylase (Pah) and mast cell growth factor (Mgf). In addition, eight unlinked polymorphic sequences, provisionally designated Amh-related sequences (Amh-rs1 through Amh-rs8), were identified by Southern blot analysis using Amh probes. Amh-rs1, -rs2, -rs4, and -rs7 were mapped to MMU1, 13, 12, and 15, respectively, by recombinant inbred (RI) strain and intraspecific backcross analyses. The NXSM RI strain distribution patterns for the four unmapped loci are also presented.  相似文献   

7.
R W Elliott  B K Lee  E M Eicher 《Genomics》1990,8(3):591-594
A DNA fragment size variant for the growth hormone gene, Gh, has been identified among inbred strains of mice. The inbred strains SM/J and CAST/Ei carry the less frequent allele Ghb and 11 other strains carry the Gha allele. Segregation analysis of data from two crosses involving SM/J and NZB/BINJ and a cross involving BALB/cJ and CAST/Ei confirmed the assignment of Gh to mouse chromosome 11 and placed the locus 2.6 +/- 1.8 map units distal to Erba (avian erythroblastosis oncogene A), a position consistent with the assignment of the Gh locus to the q22-q24 region of chromosome 17 on the human map. Segregation analysis also refined the location of Sparc (secreted acidic cysteine-rich glycoprotein) on mouse chromosome 11 to a position 16.7 +/- 4.2 map units proximal to Evi-2 (ecotropic viral integration site 2).  相似文献   

8.
Noise-induced hearing loss (NIHL) is one of the more common sources of environmentally induced hearing loss in adults. In a mouse model, Castaneous (CAST/Ei) is an inbred strain that is resistant to NIHL, while the C57BL/6J strain is susceptible. We have used the genome-tagged mice (GTM) library of congenic strains, carrying defined segments of the CAST/Ei genome introgressed onto the C57BL/6J background, to search for loci modifying the noise-induced damage seen in the C57BL/6J strain. NIHL was induced by exposing 6-8-week old mice to 108 dB SPL intensity noise. We tested the hearing of each mouse strain up to 23 days after noise exposure using auditory brainstem response (ABR). This study identifies a number of genetic loci that modify the initial response to damaging noise, as well as long-term recovery. The data suggest that multiple alleles within the CAST/Ei genome modify the pathogenesis of NIHL and that screening congenic libraries for loci that underlie traits of interest can be easily carried out in a high-throughput fashion.  相似文献   

9.
Myostatin is a negative regulator of muscle growth and mutations in its gene lead to muscular hypertrophy and reduced fat. In cattle, this is seen in 'double muscled' breeds. We have used marker-assisted introgression to introduce a murine myostatin mutation, MstnCmpt-dl1Abc [Compact (C)], into an inbred line of mice (DUHi) that had been selected on body weight and had exceptional growth. Compared with homozygous wild-type mice, homozygous (C/C) mice of this line were approximately 4-5 % lighter, had approximately 7-8 % shorter tails, substantially increased muscle weights (e.g. quadriceps muscle in males was 59 % heavier) and an increased 'dressing percentage' (approximately 49 % vs 39 %), an indicator of overall muscularity. The weights of several organs (e.g. liver, kidney, heart and digestive tract) were significantly reduced, by 12-20 %. Myostatin deficiency also resulted in drastic reductions of total body fat and of various fat depots, total body fat proportion falling from approximately 17.5 % in wild-type animals of both sexes to 9.5 % and 11.6% in homozygous (C/C) females and males, respectively. Males with a deficiency in myostatin had higher gains in muscle traits than females. Additionally, there was a strong distortion of the segregation ratio on the DUHi background. Of 838 genotyped pups from inter se matings 29 %, 63 % and 8 % were homozygous wild type (+/+), heterozygous (C/+) and homozygous (C/C), respectively, showing that MstnCmpt-dl1Abc has lower fitness on this background. This line, when congenic, will be a useful resource in gene expression studies and for finding modifying genes.  相似文献   

10.
The dominant hemimelia(Dh) mutation causes various developmental abnormalities in mice. Most -Dh/+ males, crosses between DDD females and DH-Dh/+ males, have lethal abnormalities during the neonatal period. This is a consequence of synergism among three independent gene loci; that is, theDh allele on chromosome (Chr) 1, the DDD allele on an X Chr-linked locus, and a Y Chr-linked locus in some strains. With regard to the Y Chr derived fromMus musculus musculus (M. m. musculus), the Y Chrs of C57BL/6J and BALB/cA caused lethality, but the Y Chr of C3H/HeJ did not, suggesting that not allM. m. musculus Y Chrs are the same. In the present study, whether Y Chrs derived fromM. m. domesticus andM. m. castaneus could cause lethality was investigated. Among seven inbred strains, including AKR/J, DDD, RF/J, SJL/J, SWR/J, TIRANO/Ei, and CAST/Ei, Y Chrs of AKR/ J, DDD, SJL/J, SWR/J, and TIRANO/Ei caused lethality, but Y Chrs of RF/J and CAST/Ei did not. It was unlikely that the mitochondrial genome of the DDD strain contributed to the lethality. The X Chr-linked locus could not compensate for the role of the Y Chr-linked locus. These results suggest that not allM. m. domesticus Y Chrs are the same.  相似文献   

11.
Polycystic kidney disease (PKD) is a genetically heterogeneous disorder. In addition to the many PKD-causative loci mapped in mouse and human, a number of reports indicate that modifier loci greatly influence the course of disease progression. Recently we reported a new mouse mutation, kat2J, on chromosome (Chr) 8 that causes late-onset PKD and anemia. During the mapping studies it was noted that the severity of PKD in the mutant (C57BL/6J-kat2J/+ x CAST/Ei)F2 generation was more variable than that in the parental C57BL/6J strain. This suggested that genetic background or modifier genes alter the clinical manifestations and progression of PKD. Genome scans using molecular markers revealed three loci that affect the severity of PKD. The CAST-derived modifier on Chr 1 affects both kidney weight and hematocrit. The CAST-derived modifier on Chr 19 affects kidney weight, and the C57BL/6J-derived modifier on Chr 2 affects hematocrit. Additional modifier loci are noted that interact with and modulate the effects of these three loci. The mapping of these modifier genes and their eventual identification will help to uncover factors that can delay disease progression. These, in turn, could be used to design suitable modes of therapy for various forms of human PKD.  相似文献   

12.
Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36-74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT.  相似文献   

13.
Segregating populations were developed to evaluate the inheritance of the fuzzless seed phenotypes in upland cotton (Gossypium hirsutum L.). Accession 143 of the Mississippi Obsolete Variety Collection (MOVC) has a fuzzless seed phenotype. This line carries the n(2) locus which is recessive to the seed fuzz phenotype. Data from the F(2), BC(1)F(1), F(2:3), and BC(1)F(2) populations of DP 5690 x 143 fit a two-loci model for expression of the recessive fuzzless seed phenotype. Fuzzless seeds were obtained in n(2)n(2) plants when a second recessive locus (n(3)) was present. The dominant N(3) allele found in DP 5690 confers the fuzzy seed phenotype in homozygous n(2) plants. Accession 243 of the MOVC carries the N(1) locus, which is dominant to the presence of seed coat fuzz. No variation from expected ratios was observed in the F(2), BC(1)F(1), F(2:3), and BC(1)F(2) populations of the DP 5690 x 243 cross. The N(3) allele had no apparent effect on the expression of the N(1) locus. In a cross between accessions 243 x 143, a few plants were observed which were completely devoid of lint and fuzz fiber (fiberless). A fiberless line was developed from one of these fiberless plants. This line was designated MD 17 fiberless. In a cross between DP 5690 x MD 17 fiberless, we demonstrated that at least three loci were involved in the expression of the fiberless phenotype. The involvement of n(2) and n(3) in the expression of this fiberless phenotype was demonstrated in the F(2) progeny of the cross between 143 x MD 17 fiberless. This is the first demonstration that N(1), n(2), and n(3) interacted to produce fiberless seed.  相似文献   

14.
The KCC1 K-Cl cotransporter is a major regulator of erythroid and non-erythroid cell volume, and the KCC1 gene is a candidate modifier gene for sickle cell disease and other hemoglobinopathies. We have cloned and sequenced the mouse KCC1 (mKCC1) gene, defined its intron-exon junctions, and analyzed (AC)/(TG) intragenic polymorphisms. A highly polymorphic (AC) repeat of mKCC1 intron 1 was characterized in musculus strains, and used to prove lack of linkage between the mKCC1 gene and the rol (resistant to osmotic lysis) locus. The intron 1 (AC) repeat in CAST/Ei and SPRET/Ei was not only more divergent in length but also underwent additional sequence variation. A dimorphic (TG) repeat in intron 2 distinguished CAST/Ei from other strains, and an intron 17 B1 Alu-like SINE present in all musculus strains was found to be absent from intron 17 in SPRET/Ei. These and additional described strain-specific polymorphisms will be useful mapping and genetic tools in the study of mouse models of sickle cell disease.  相似文献   

15.
Constitutive myostatin gene knockout in mice causes excessive muscle growth during development. To examine the effect of knocking out the myostatin gene after muscle has matured, we generated mice in which myostatin exon 3 was flanked by loxP sequences (Mstn[f/f]) and crossed them with mice bearing a tamoxifen-inducible, ubiquitously expressed Cre recombinase transgene. At 4 mo of age, Mstn[f/f]/Cre+ mice that had not received tamoxifen had a 50-90% reduction in myostatin expression due to basal Cre activity but were not hypermuscular relative to Mstn[w/w]/Cre+ mice (homozygous for wild-type myostatin gene). Three months after tamoxifen treatment (initiated at 4 mo of age), muscle mass had not changed from the pretreatment level in Mstn[w/w]/Cre+ control mice. Tamoxifen administration to 4-mo-old Mstn[f/f]/Cre+ mice reduced myostatin mRNA expression to less than 1% of normal, which increased muscle mass approximately 25% over the following 3 mo in both male and female mice (P<0.005 vs. control). Fiber hypertrophy appeared to be sufficient to explain the increase in muscle mass. The pattern of expression of genes encoding the various myosin heavy-chain isoforms was unaffected by postdevelopmental myostatin knockout. We conclude that, even after developmental muscle growth has ceased, knockout of the myostatin gene induces a significant increase in muscle mass.  相似文献   

16.
Guanine deaminase catalyses the conversion of guanine to xanthine and ammonia, thereby irreversibly removing the guanine base from the pool of guanine-containing metabolites. We have identified five alleles at the mouse guanine deaminase locus by cDNA sequencing. These alleles were defined by single-nucleotide polymorphisms at a total of 19 positions. For each allele the representative strains are as follows: Gda(a), C57BL/6J and DBA/2J; Gda(b), A/J; Gda(c), MOLF/Ei; Gda(d), CAST/Ei; and Gda(e), SPRET-1. The only codon change resulting in an amino acid substitution was found at nucleotide 523, where GAT was replaced by AAT in Mus spretus resulting in the deduced substitution of Asp-174 by Asn. The single-nucleotide difference between the a and b alleles was also typed by allele-specific oligonucleotide amplification for 17 common strains of Mus musculus susbp. musculus. By typing the AxB and BxA recombinant inbred (RI) strain sets, Gda was mapped to mouse chromosome 19, a region syntenic with human chromosome 9q11-q22.  相似文献   

17.
The spontaneous development of juvenile-onset, ovarian granulosa cell (GC) tumors in the SWR/Bm (SWR) inbred mouse strain is a model for juvenile-type GC tumors that appear in infants and young girls. GC tumor susceptibility is supported by multiple Granulosa cell tumor (Gct) loci, but the Gct1 locus on Chr 4 derived from SWR strain background is fundamental for GC tumor development and uniquely responsive to the androgenic precursor dehydroepiandrosterone (DHEA). To resolve the location of Gct1 independently from other susceptibility loci, Gct1 was isolated in a congenic strain that replaces the distal segment of Chr 4 in SWR mice with a 47 × 106-bp genomic segment from the Castaneus/Ei (CAST) strain. SWR females homozygous for the CAST donor segment were confirmed to be resistant to DHEA- and testosterone-induced GC tumorigenesis, indicating successful exchange of CAST alleles (Gct1 CA ) for SWR alleles (Gct1 SW ) at this tumor susceptibility locus. A series of nested, overlapping, congenic sublines was created to fine-map Gct1 based on GC tumor susceptibility under the influence of pubertal DHEA treatment. Twelve informative lines have resolved the Gct1 locus to a 1.31 × 106-bp interval on mouse Chr 4, a region orthologous to human Chr 1p36.22.  相似文献   

18.
肌肉生长抑制素 (myostatin,Mstn)基因失活可引起哺乳动物的肌肉增生,但其调控机制尚不清楚,且缺乏可靠的试验材料验证Mstn相关分子通路的变化。本研究所用PK3108细胞系是在野生型PK15细胞系的基础上成功靶向敲除一条等位基因,在其靶位点敲入标记基因,敲除了204 bp的外显子3序列, LoxP锚定在其标记基因两侧。利用Cre/LoxP重组酶删除系统删除插入PK3108Mstn靶位点的标记,借助流式细胞仪和荧光蛋白甄别得到无标记的过渡型细胞系PK3108-2。将Cas9/sgRNA表达载体和供体DNA共转染PK3108-2,借助G418抗性筛选和倒置荧光显微镜挑选出仅带阳性标记的克隆L18,对其基因组进行PCR产物凝胶电泳与PCR产物测序,证明克隆L18在预设位点发生同源重组;对其蛋白质进行Western 印迹实验表明,Mstn被成功地敲除失活。综上结果证明,本研究实现了双等位基因的精准敲除,构建了Mstn双敲除梯度回复表达细胞系。本研究为揭示Mstn的作用机制提供理想的实验材料,也为双等位基因的敲除提供了可借鉴的技术路线。  相似文献   

19.
Johnson KR  Zheng QY  Erway LC 《Genomics》2000,70(2):171-180
Inbred strains of mice offer promising models for understanding the genetic basis of human presbycusis or age-related hearing loss (AHL). We previously mapped a major gene affecting AHL in C57BL/6J mice. Here, we show that the same Chromosome 10 gene (Ahl) is a major contributor to AHL in nine other inbred mouse strains-129P1/ReJ, A/J, BALB/cByJ, BUB/BnJ, C57BR/cdJ, DBA/2J, NOD/LtJ, SKH2/J, and STOCK760. F1 hybrids between each of these inbred strains and the normal-hearing inbred strain CAST/Ei retain good hearing, indicating that inheritance of AHL is recessive. To follow segregation of hearing loss, F1 hybrids were backcrossed to the parental strains with AHL. Auditory-evoked brain-stem response thresholds were used to assess hearing in more than 1500 N2 mice and analyzed as quantitative traits for linkage associations with Chromosome 10 markers. Highly significant linkage was found in all nine strain backcrosses, with the highest probability (LOD > 70) near the marker D10Mit112. This map position for Ahl is near the waltzer mutation (v) and the modifier of deaf waddler locus (mdfw), suggesting the possibility of allelism. Results from an intercross of C57BL/6J and NOD/LtJ mice indicate that the 6- to 10-month difference in AHL onset between these two strains is not due to allelic heterogeneity of the Ahl gene.  相似文献   

20.
The strain distribution for macronutrient diet selection was described in 13 mouse strains (AKR/J, NZB/B1NJ, C57BL/6J, C57BL/6ByJ, DBA/2J, SPRET/Ei, CD-1, SJL/J, SWR/J, 129/J, BALB/cByJ, CAST/Ei, and A/J) with the use of a self-selection protocol in which separate carbohydrate, fat, and protein diets were simultaneously available for 26-30 days. Relative to carbohydrate, nine strains consumed significantly more calories from the fat diet; two strains consumed more calories from carbohydrate than from fat (BALB/cByJ, CAST/Ei). Diet selection by SWR/J mice was variable over time, resulting in a lack of preference. One strain (A/J) failed to adapt to the diet paradigm due to inadequate protein intake. Comparisons of proportional fat intake across strains revealed that fat selection/consumption ranged from 26 to 83% of total energy. AKR/J, NZB/B1NJ, and C67BL/6J mice self-selected the highest proportion of dietary fat, whereas the CAST/Ei and BALB/cByJ strains chose the lowest. Finally, epididymal fat depot weight was correlated with fat consumption. There were significant positive correlations in AKR/J and C57BL/6J mice, which are highly sensitive to dietary obesity. However, absolute fat intake was inversely correlated with epididymal fat in two of the lean strains: SWR/J and CAST/Ei. We hypothesize that the SWR/J and CAST/Ei strains are highly sensitive to a negative feedback signal generated by increasing body fat, but the AKR/J and C67BL/6J mice are not. The variation in dietary fat selection across inbred strains provides a tool for dissecting the complex genetics of this trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号