首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨小剂量过氧化氢导致的氧化应激对大鼠心肌细胞钙瞬变及细胞凋亡的作用。方法:解剖取出成年大鼠心脏,应用langendorff方法分离心肌细胞,加入fluo-3荧光指示剂后,应用不同浓度的过氧化氢作用于心肌细胞,在共聚焦显微镜下测定心肌细胞内钙瞬变。分离并培养新生大鼠心肌细胞,观察过氧化氢处理心肌细胞后其形态的变化,从而评价小剂量过氧化氢对心肌细胞的凋亡作用。结果:应用0.125 mmol/L、0.25 mmol/L及0.375 mmol/L的过氧化氢作用于心肌细胞后,心肌细胞内钙瞬变幅度明显升高,并呈时间剂量依赖性。在培养的大鼠原代心肌细胞中加入0.25 mmol/L的过氧化氢后,心肌细胞发生凋亡的形态变化。结论:小剂量过氧化氢可开放心肌细胞L-钙通道,明显增加心肌细胞内钙瞬变,并导致心肌细胞凋亡。  相似文献   

2.
Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations.  相似文献   

3.
活细胞钙动态的共聚焦扫描显微镜检测技术   总被引:4,自引:2,他引:2  
共聚焦激光扫描显微镜(Confocal Laser Scarming Microscope,CLSM)广泛应用于活细胞内钙敏感探针标记的钙水平的动态测量。较之传统的显微镜CLSM在钙成像分析上有着不可比拟的优越性,但也存在一些缺陷,近些年陆续出现了一些针对这些缺陷的改善措施,如比率法、葡聚糖探针及其他一些新技术与共聚焦显微镜的联合应用等,并且出现了诸如双光子显微镜等新型激光共聚焦显微镜。随着共聚焦钙成像技术的不断发展进步,其今后的应用前景将会越越广阔。  相似文献   

4.
We describe here the use of a confocal laser scanning microscope for imaging fast dynamic changes of the intracellular calcium ion concentration ([Ca2+]i) in isolated ventricular cell pairs. The scanning apparatus of our system, paired galvanometer mirrors, can perform narrow band scanning of an area of interest at a high temporal resolution of less than 70 msec per image. The actual [Ca2+]i is obtained directly through the fluorescence intensity of injected fluo-3, which responds to changes of [Ca2+]i in optically sectioned unit volumes of the cell. Images of the calcium wave obtained during propagation between paired cells revealed that the wavefront is constant in shape and propagates at constant velocity without any delay at the cell-to-cell junction. The confocal laser scanning microscope with depth-discriminating ability is a valuable tool for taking pictures of the sequence of biological events in living cells.  相似文献   

5.
Current research in cell biology frequently uses light microscopy to study intracellular organelles. To segment and count organelles, most investigators have used a global thresholding method, which relies on homogeneous background intensity values within a cell. Because this is not always the case, we developed WatershedCounting3D, a program that uses a modified watershed algorithm to more accurately identify intracellular structures from confocal image data, even in the presence of an inhomogeneous background. We give examples of segmenting and counting endoplasmic reticulum exit sites and the Golgi apparatus.  相似文献   

6.
Peroxisome is a reservoir of intracellular calcium   总被引:1,自引:0,他引:1  
We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium.  相似文献   

7.
Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled arachidonic acid or BODIPY-conjugated electrophiles can be paired with organelle-specific probes to identify specific biological processes and signaling pathways activated in response to oxidative stress. In particular, we demonstrate “negative” and “positive” labeling methods using BODIPY-tagged reagents for examining oxidative modifications to protein nucleophiles. The protocol describes the use of these probes in slot immunoblotting, quantitative Western blotting, in-gel fluorescence, and confocal microscopy techniques. In particular, the use of the BODIPY fluorophore with organelle- or biological process-specific dyes and chromophores is highlighted. These methods can be used in multiple cell types as well as isolated organelles to interrogate the role of oxidative modifications in regulating biological responses to oxidative stress.  相似文献   

8.
Grienberger C  Konnerth A 《Neuron》2012,73(5):862-885
Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.  相似文献   

9.
Prevacuolar compartments (PVCs) are membrane-bound organelles that mediate protein traffic between Golgi and vacuoles in the plant secretory pathway. Here we identify and define organelles as the lytic prevacuolar compartments in pea and tobacco cells using confocal immunofluorescence. We use five different antibodies specific for a vacuolar sorting receptor (VSR) BP-80 and its homologs to detect the location of VSR proteins. In addition, we use well-established Golgi-markers to identify Golgi organelles. We further compare VSR-labeled organelles to Golgi organelles so that the relative proportion of VSR proteins in Golgi vs. PVCs can be quantitated. More than 90% of the BP-80-marked organelles are separate from Golgi organelles; thus, BP-80 and its homologs are predominantly concentrated on the lytic PVCs. Additionally, organelles marked by anti-AtPep12p (AtSYP21p) and anti-AtELP antibodies are also largely separate from Golgi apparatus, whereas VSR and AtPep12p (AtSYP21p) were largely colocalized. We have thus demonstrated in plant cells that VSR proteins are predominantly present in the lytic PVCs and have provided additional markers for defining plant PVCs using confocal immunofluorescence. Additionally, our approach will provide a rapid comparison between markers to quantitate protein distribution among various organelles.  相似文献   

10.
Mitochondrion is a critical intracellular organelle responsible for energy production and intracellular signaling in eukaryotic systems. Mitochondrial dysfunction often accompanies and contributes to human disease. Majority of the approaches that have been developed to evaluate mitochondrial function and dysfunction are based on in vitro or ex vivo measurements. Results from these experiments have limited ability in determining mitochondrial function in vivo. Here, we describe a novel approach that utilizes confocal scanning microscopy for the imaging of intact tissues in live aminals, which allows the evaluation of single mitochondrial function in a real-time manner in vivo. First, we generate transgenic mice expressing the mitochondrial targeted superoxide indicator, circularly permuted yellow fluorescent protein (mt-cpYFP). Anesthetized mt-cpYFP mouse is fixed on a custom-made stage adaptor and time-lapse images are taken from the exposed skeletal muscles of the hindlimb. The mouse is subsequently sacrificed and the heart is set up for Langendorff perfusion with physiological solutions at 37 °C. The perfused heart is positioned in a special chamber on the confocal microscope stage and gentle pressure is applied to immobilize the heart and suppress heart beat induced motion artifact. Superoxide flashes are detected by real-time 2D confocal imaging at a frequency of one frame per second. The perfusion solution can be modified to contain different respiration substrates or other fluorescent indicators. The perfusion can also be adjusted to produce disease models such as ischemia and reperfusion. This technique is a unique approach for determining the function of single mitochondrion in intact tissues and in vivo.  相似文献   

11.
研究低氧、复氧对乳鼠心肌细胞内钙离子浓度的影响,以及牛磺酸在模拟心肌缺血/再灌注(I/R)过程中对细胞内钙的调节作用。采用SD大鼠乳鼠进行心肌细胞培养,建立模拟I/R模型。以Fluo-4/AM荧光指示剂负载,应用激光共聚焦显微镜技术(confocal laser scanning microscope,CLSM)检测心肌细胞钙离子浓度的变化。对照组心肌细胞内钙离子荧光强度(23.71±2.37U)较低;低氧180 min后复氧即刻,钙离子荧光强度开始增加(57.52±8.31U),复氧180 min后钙离子荧光强度(71.13±4.74U)显著增高(P<0.01vs对照组)。而牛磺酸组细胞内钙离子荧光强度较模拟I/R组显著降低[(42.42±4.17U)vs(71.13±4.74U),P<0.01]。心肌细胞缺血/缺氧导致Ca2+超载;模拟I/R Ca2+超载加剧,而牛磺酸有明显减轻心肌细胞模拟I/R时Ca2+超载的作用。  相似文献   

12.
Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro­tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30–100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.  相似文献   

13.
大鼠肺动脉平滑肌培养细胞内Ca~(2+)反应的多样性   总被引:2,自引:0,他引:2  
用Ca2+荧光色素Flou-3/AM负荷原代培养的大鼠肺动脉平滑肌细胞,在共聚焦激光显微镜下观察细胞内Ca2+对各种缩血管物质反应的非均一性。实验结果提示:各种Ca2+通道的反应与细胞培养时间相关。80%以上的Ca2+贮库具有CICRCa2+通道,在肺血管管平滑肌细胞可能存在一种只具有CICR通道的Ca2+贮库,CICR的Ca2+释放作用强于ICRCa2+通道  相似文献   

14.
A confocal fluorescence microscope was used to study the antigen receptor-mediated calcium signals in B cells. Anti-IgD binding to B lymphoma cells (BAL17) increased the intracellular calcium concentration with short lag times. Confocal fluorescence images of the fluo-3-loaded BAL17 cells showed that the intracellular calcium ion concentrations increased non-homogeneously, suggesting that the calcium signals transferred not only to the cytoplasm but also to the nucleus.  相似文献   

15.
Excitable cells often display rapid coordination of hormone-induced intracellular calcium signals. Calcium elevations that begin in a single epithelial cell also may spread to adjacent cells, but coordination of hormone-induced signals among epithelial cells has not been described. We report the use of confocal microscopy to determine the inter- and intracellular distribution of cytosolic calcium in isolated rat hepatocyte couplets, an isolated epithelial cell system in which functional polarity is maintained. Both vasopressin and phenylephrine evoked sequential coordinated calcium signals in the couplets, even during cytosolic calcium oscillations. The coupling was abolished by closure of intercellular gap junction channels by treatment with octanol. These observations demonstrate that hormone-induced intracellular calcium signals are coordinated among hepatocytes and suggest that gap junction channels mediate this intercellular integration of tissue responsiveness.  相似文献   

16.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

17.
Voltage-dependent calcium influx has been shown to regulate the differentiation of cultured amphibian spinal neurons. We have examined the transient elevation of intracellular calcium induced by depolarization, using calcium indicators and confocal microscopy with high temporal and spatial resolution. Rapid calcium elevations in both the nucleus and the cytosol are primarily due to calcium-dependent release of calcium from intracellular stores. Depletion of stores associated with the endoplasmic reticulum reduces all transients. Elevations diminish with neuronal maturation. Depletion of stores of intracellular calcium at early times affects neuronal differentiation in a manner similar to the prevention of influx. The results indicate that both influx and release are necessary to promote neuronal differentiation.  相似文献   

18.
We have previously reported that lizard red blood cells control their cytosolic calcium concentration by sequestering calcium ions in pools, which could be discharged by thapsigargin, by the Na+/H+ ionophore, monensin, by the K+/H+ ionophore, nigericin and by the proton pump inhibitor, bafilomycin A1 [1]. We have now demonstrated, with the aid of confocal microscopy, the presence in these cells of organelles, which accumulate the dye acridine orange and are thus by inference the sites of proton pools. We have found, moreover, that monensin, nigericin and bafilomycin all act to discharge these pools. We further show that calcium release ensues when the calcium ionophore, ionomycin, is added after thapsigargin and monensin; this implies the existence of a third pool, besides the acidic pool and the Endoplasmic Reticulum (ER), which participates in calcium homeostasis. The ER calcium pool can de discharged by the addition of the second messenger, IP3, and we present evidence, based on confocal microscopy, that the IP3 receptors are located in or close to the nucleus.  相似文献   

19.
Ohashi T  Hagiwara M  Bader DL  Knight MM 《Biorheology》2006,43(3-4):201-214
The present study utilised pipette aspiration and simultaneous confocal microscopy to test the hypothesis that chondrocyte deformation is associated with distortion of intracellular organelles and activation of calcium signalling. Aspiration pressure was applied to isolated articular chondrocytes in increments of 2 cm of water every 60 seconds up to a maximum of 10 cm of water. At each pressure increment, confocal microscopy was used to visualise the mitochondria and nucleus labelled with JC-1 and Syto-16, respectively. To investigate intracellular calcium signalling, separate cells were labelled with Fluo 4, rapidly aspirated to 5 cm of water and then imaged for 5 minutes at a tare pressure of 0.1 cm of water. Partial cell aspiration was associated with distortion of the mitochondrial network, elongation of the nucleus and movement towards the pipette mouth. Treatment with cytochalasin D or nocodazole produced an increase in cell aspiration indicating that both the actin microfilaments and microtubules provide mechanical integrity to the cell. When the data was normalised to account for the increased cell deformation, both actin microfilaments and microtubules were shown to be necessary for strain transfer to the intracellular organelles. Mitochondria and nucleus deformation may both be involved in chondrocyte mechanotransduction as well as cellular and intracellular mechanics. In addition, pipette aspiration induced intracellular calcium signalling which may also form part of a mechanotransduction pathway. Alternatively calcium mobilisation may serve to modify actin polymerisation, thereby changing cell mechanics and membrane rigidity in order to facilitate localised cell deformation. These findings have important implications for our understanding of cell mechanics and mechanotransduction as well as interpretation and modelling of pipette aspiration data.  相似文献   

20.
Previous findings indicate that spatial restriction of intracellular calcium levels within growth cones can regulate growth cone behavior at many levels, ranging from filopodial disposition to neurite extension. By combining techniques for focal stimulation of growth cones with those for measurement of filopodia and for capturing low intensity calcium signals, we demonstrate that filopodia on individual growth cones can respond to imposed stimuli independently from one another. Moreover, filopodia and their parent growth cones appear to represent functionally and morphologically distinct domains of calcium regulation, possessing distinct calcium sources and sinks. Both are sensitive to calcium influx; however, application of the calcium ionophore A23187 to cells in calcium-free medium demonstrated the presence of potential intracellular calcium pools in the growth cone proper, but not in isolated filopodia. Thapsigargin significantly reduced the rise in growth cone calcium levels associated with excitatory neurotransmitters, further implicating release from calcium pools as one component of growth cone calcium regulation. The relative contributions of these pools were examined in response to excitatory neurotransmitters by quantitative calcium measurements made in both growth cones and isolated filopodia. Striking differences were observed; filopodia were sensitive to a low concentration of dopamine and serotonin, while growth cones displayed an amplified rise at a higher concentration. The spatial distribution of organelles that could serve as morphological correlates to such calcium amplification was examined using confocal microscopy. While the majority of organelles were located in the central core of the growth cone proper, peripheral organelles were detected at the base of a subset of filopodia. The distinctive distribution of calcium regulation within motile growth cones suggests one mechanism by which growth cones may regulate their complex behavior. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号