首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Schizonts of E. nieschulzi lie in a vacuole within the host cell. After nuclear division the cell membrane invaginates forming merozoites. Differentiation of the pellicle and other organelles occurs while merozoites are still attached to the schizont cytoplasm. Merozoites have a pellicle thickened at the anterior end to form a polar ring. Radiating posteriorly from the ring, directly beneath the pellicle, are about 25 microtubules. Within the polar ring is a dense conoid. Extending posteriorly from within the conoid is a paired organelle. The paired organelle varies in size and shape in each generation of merozoites. Numerous toxonemes occupy the anterior half of the merozoites. Two paranuclear bodies are present in 1st generation merozoites. One or 2 granular bodies were seen in the anterior end of 2nd generation merozoites. In 3rd generation merozoites 6 or more granular bodies were seen anterior to the nucleus. Each merozoite has a single nucleus containing diffuse chromatin material. Elongate mitochondria and glycogen granules are present. The vacuole surrounding mature merozoites contains residual cytoplasm of the schizont and some granular material. Microvilli project into the vacuole from the host cell membrane.  相似文献   

2.
SYNOPSIS. A study was made of the fine structure of some stages in the life cycle of an undesignated species of Isospora parasitic in a gecko. The merozoites which lay within a membrane-bound periparasitic vacuole in the host epithelial cell, had a striking similarity to Plasmodium, Lankesterella, Toxoplasma, Besnoitia, Sarcocystis, Eimeria and the M-organism. Each merozoite was invested with a triple-layered pellicle, the outer membrane of which was loosely applied. At the anterior end of the merozoite were conoid and apical rings; microtubules terminated in the posterior apical ring. Other organelles included nucleus, endoplasmic reticulum, mitochondria, micropyle, paired organelle, toxonemes and a variety of vacuoles. Although the sequence of development of the merozoite was not completely followed, some events in this process were recorded. The evidence suggests that anterior ends are formed early and that merozoites develop subsequently by a process of budding. The merozoite pellicle appears to be continuous with, altho structurally different from, the investing membrane of the parent cell.  相似文献   

3.
SYNOPSIS The development of 1st generation schizonts of Eimeria callospermophili was studied with cell cultures and with experimentally infected host animals, Spermophilus armatus. Sporozoite-shaped schizonts each had 5-10 nuclei and all of the organelles of the sporozoite; each nucleus had a nucleolus and an associated Golgi apparatus. In stages immediately preceding merozoite formation, an intranuclear spindle apparatus with conical polar areas were observed near the outer margin of each nucleus. Two centrioles, each having 9 single peripheral tubules and one central tubule, were observed near each pole in some specimens. Merozoite formation began internally, with anlagen of 2 merozoites developing near each nucleus. The inner membrane of the merozoites first appeared as 2 dense thickenings adjacent to the polar cones and centrioles; subpellicular microtubules appeared simultaneously. Two anterior annuli and the conoid formed between the 2 thickenings. Vesicles, possibly of Golgi origin, were located next to the forming inner membrane. As the forming merozoites underwent elongation, a rhoptries anlage, a Golgi apparatus, refractile bodies, and mitochondria were incorporated into each. Sporozoite-shaped schizonts with merozoite anlagen transformed into spheroid or ovoid schizonts; at this time the conoid, rhoptries, micronemes, and the inner membrane of the pellicle gradually disappeared; several small refractile bodies were formed from the larger one. When development was about 1/3 complete, the immature merozoites began to grow outward from the surface of the schizont. In this phase of development, the single surface membrane of the schizont became the outer membrane of the merozoite's pellicle, and additional organelles, including the nucleus, were incorporated. Finally, the merozoites became pinched off, leaving a residual body. Development in cell cultures and host tissues was similar. This type of schizogony, previously undescribed in Eimeria, is compared with corresponding stages of development in other species of Eimeria and Sporozoa.  相似文献   

4.
The fine structure of the exoerythrocytic stages of Plasmodium lophurae was studied. in specimens grown in tissue cultures of avian cells. Specimens were prepared for sectioning by a method which minimizes disturbance and permits precise selection and orientation specimens.Plasmodium lophurae is similar in many aspects to P. fallax. Merozoites are highly specialized and differentiated. Analysis of their ultrastructure revealed the polar complex to be a specialization of the pellicular envelope and its associated underlying microtubules. The polar rings may simply be a modification of the inner membrane of the pellicle and not discrete structures as previously reported. The electron-dense polar organelles are separated on morphological grounds into three groups: the large paired organelles and the small dense bodies which are both linked to microducts, and the transitional bodies, a third organelle being reported for the first time. Transitional bodies are without microducts, occur in fully mature merozoites and persist only for a short period. All three of these organelles appear to be related to and possibly even derived from internal membrane systems and ribosomes. The apolar end of the merozoite contains the mitochondrion and its associated spherical body. Detailed study of the latter shows it to be cylindrical.Upon entering the host cell, the parasite adds a third membrane at the interface between it and the cell. The merozoite becomes spherical and undergoes transformation into a trophozoite. During this reorganization phase, dedifferentiation occurs and is followed by a rapid growth phase. The end of the growth phase is signaled by the appearance of germinal clefts and nuclear division. The entire process of schizogony culminates in a highly synchronized formation of merozoites.Processes of the limiting membrane forming the host parasite interface were observed extending deply into the cytoplasm of the host cell and often appeared to form bridges between two or more parasites. The significance of this new observation is not yet established.  相似文献   

5.
利用透射电镜对寄生于北京鸭小肠的毁灭泰泽球虫的裂殖生殖过程进行了观察。滋养体内未见多糖颗粒、脂肪体和致密体,在细胞质的被膜空泡内发现退化的微线和棒状体。在裂殖体核分裂过程中,出现典型的球虫型有丝分裂装置(如中心粒、中心锥、纺锤体)。裂殖子的发生是外瓣生方式,裂殖子在裂殖体的表面形成,并以母细胞的限制膜为外膜。  相似文献   

6.
SYNOPSIS. An electron microscope study of sporozoites of Eimeria nieschulzi Dieben, 1924 revealed that they have a pellicle which is thickened at the anterior end to form 2 polar rings. Radiating posteriorly from the rings, directly beneath the pellicle, are approximately 25 microtubules which may aid in support and locomotion of the sporozoite. Within the polar ring is a dense conoid. Numerous toxonemes extend posteriorly from the area of the conoid. Two paranuclear bodies are present and some toxonemes are closely associated with the anterior body. Numerous ribosomes, bodies containing granular material, and osmiophilic vesicle bounded bodies are also present. Each sporozoite has a single nucleus with a diffuse karyosome and distinct nuclear double membrane.  相似文献   

7.
Transmission electron microscopy was used to study the ultrastructure of schizogony of Sarcocystis falcatula in the lungs of budgerigars (Melopsittacus undulatus). Schizogony occurred exclusively by endopolygeny within endothelial cells of pulmonary capillaries, venules, and small veins. Early schizonts were elongate with a large nucleus and nucleolus, surrounded by a pellicle consisting of a plasmalemma and an inner single membrane, and contained most of the organelles and inclusion bodies found in merozoites of Sarcocystis species. As development proceeded, schizonts increased in size and conformed to the shapes of the pulmonary blood vessels. As micronemes, dense granules, the conoid, and subpellicular microtubules disappeared, there was an increase in the size and number of mitochondria, Golgi complexes, and Golgi adjuncts (apicoplasts). As the nucleus elongated, there was a progressive increase in the number of spindles located at various intervals along the nuclear envelope. Eventually, 2 merozoites formed internally immediately above each spindle. During endopolygeny, a portion of the nucleus was incorporated into each merozoite bud along with 1 or 2 Golgi adjuncts, a Golgi complex, mitochondria, endoplasmic reticulum, and ribosomes. During merozoite formation, micronemes appeared in close association with the Golgi complex and gradually increased in number. The pellicle invaginated around the merozoites so they budded at the schizont surface leaving behind a small, central residual body. Dense granules appeared after merozoites were completely formed. Schizonts were 24 x 6.8 microm and contained 24-96 merozoites. Merozoites were 5.1 x 1.8 microm and were found free in the pulmonary air passages and pulmonary capillaries and within nearly all cells of the lung except red blood cells.  相似文献   

8.
1. Structurally the "sensory bristles" in Euplotes patella are typical cilia, but no ciliary rootlets connect their bases. 2. The "neuromotor fibrils" are composed of filaments 21 mµ in diameter. At the point of junction of the filaments with the peripheral ciliary fibrils a granular structure 65 to 90 mµ in diameter is seen which has dense central and peripheral zones separated by a less dense layer. Information on the interconnection of organelles is expanded. 3. A system of subpellicular fibrils is described. The external fibrillar system described by others could not be found. 4. The motorium is shown to be a mass of intertwining rootlet filaments. 5. The micronucleus is shown to have a spongy, dense material in a less dense material, all of which is surrounded by a double-layered membrane. 6. The double-layered macronuclear membrane contains annuli whose outside diameter is 70 mµ; the macronuclear bodies are sometimes closely applied to the membrane. In the macronuclear reorganization bands, the solution plane is a fine network, while the reconstruction plane is devoid of structure at the level of resolution observed. 7. The mitochondria are composed of tubules, only occasionally oriented, usually embedded in a surrounding material of lower density. 8. Microbodies whose diameters are 250 to 350 mµ are frequently observed in close association with mitochondrial surfaces. 9. The food vacuoles, contractile vacuoles, and ciliary vacuoles are bounded by single-layered membranes. In the food vacuoles, the bacteria are surrounded by membranes individually or in small groups. 10. Cytoplasmic rods localized in the oral region, and cytoplasmic granules dispersed at random, are described. No typical ergastoplasm, endoplasmic reticulum, or Golgi material was observed.  相似文献   

9.
Bank voles (Clethrionomys glareolus) were infected by stomach tube with Frenkelia sporocysts from the faeces of buzzards (Buteo buteo). The voles were sacrificed at regular intervals and their livers examined electronmicroscopically. Seven days p.i. developmental stages of Frenkelia could be detected in liver parenchymal cells. The youngest schizonts detected are enveloped by a pellicle consisting of two membranes. This pellicle, which is in direct contact with the host cell mitochondria, shows marked invaginations which increase with the development of the schizont. A parasitophorous vacuole is not detectable. In developing schizonts numerous sections through nuclei with nucleic spindles and merozoite anlagen (dome-shaped) structures) are visible. It is not clear whether there are several nuclei or a section through one large and lobed nucleus. Within the merozoite anlagen the conoid and the subpellicular microtubules are formed first. By the prolongation of the dome-shaped structures towards the posterior pole, the nucleus and the other newly formed cell organelles are incorporated into the forming merozoite. The posterior pole of the merozoite still remains open at this stage of development. With increasing differentiation the merozoites become lancet-shaped, their apical poles bing always directed towards the periphery of the schizont. The outer membrane of the pellicle of the schizont forms the outer part of the pellicle of the merozoites by invaginating around them. At this stage of development the inner membrane of the pellicle of the schizont is no longer detectable. Thus the typical pellicle of the motile stages of sporozoaonsisting of three membranes is formed. In the centre of the merozoites which lie freely in the liver cell a residual body is present. The host cell reacts against the parasites by forming a thick border of mitochondria and distinct endoplasmic reticulum.  相似文献   

10.
SYNOPSIS. The fine structure of schizonts and free merozoites of the neogregarine Farinocystis tribolii Weiser, and their development in the fat body of larval Tribolium castaneum were studied.
The surface of a multinucleate schizont and that of a uninucleate merozoite is covered by a double-layered membrane. Rhoptries and micronemes are present. The cytoplasm is packed with ribosomes and also contains dark bodies. Mitochondria are of the vesicular type. The spherical nucleus of the schizont and merozoite contains a large nucleolus. The anterior end of the merozoite has a typical conoidal complex composed of a conoid and a polar ring with 22 subpellicular mirotubules projecting from it.
New findings are a membranous septum across the body of the merozoite at 2/3 of its length below the nucleus and a highly osmiophilic spiral structure in the perinuclear space close to the Golgi complex. In addition, we found some "developmental stages" of the latter structure.  相似文献   

11.
The common renal adenocarcinoma of the leopard frog was studied in thin sections with the electron microscope. Approximately a third of the tumors examined were found to contain spheroidal bodies of uniform size and distinctive morphology that are believed to be virus particles. These consist of hollow spheres (90 to 100 mµ) having a thick capsule and a dense inner body (35 to 40 mµ) that is eccentrically placed within the central cavity (70 to 80 mµ). Virus particles of this kind occur principally in the cytoplasm but occasionally they are also found in the nucleus and in the extracellular spaces of the tumor. The intranuclear inclusion bodies that are visible with the light microscope are largely comprised of hollow, spherical vesicles with thin limiting membranes. These are embedded in a finely granular matrix. A few of the thin walled vesicles contain a dense inner body like that of the cytoplasmic virus particles. This suggests that they may be immature virus particles. The inclusion bodies are believed to be formed in the course of virus multiplication but they usually contain very few mature virus particles. Bundles of dense filaments and peculiar vacuolar inclusions also occur in the cytoplasm of the tumor cells. These seem to be related in some way to the presence of virus but their origin and significance remain obscure. These findings are discussed in relation to previous work suggesting that the Lucké adenocarcinoma is caused by an organ-specific filtrable agent. It is concluded that the "virus particles" found in electron micrographs of the tumor cells may be the postulated tumor agent. On the other hand, the possibility remains that the particles described here are not those that are causally related to the tumors.  相似文献   

12.
The cultivated monkey kidney cell is subject to changes when infected with ECHO viruses 6, 9, and 19. The electron microscope reveals three stages of infection: (a) initial stage. The nucleus appears granular with chromatin condensation on the nuclear envelope. The cytoplasm contains electron transparent vesicles and vacuoles forming nests. (b) Intermediate stage. The nucleus seems to diminish, appearing more pycnotic and displaced toward the periphery. The cytoplasm is filled with electron transparent vacuoles and vesicles, and dense masses as well as some spiral bodies are seen. The mitochondria retain their shape. Dense particles are seen, which are possibly of viral nature. (c) Final stage. The nucleus is contracted to a narrow strip close to the cellular membrane or is completely destroyed. The cytoplasm shows no apparent changes. Crystals are frequently observed in cells infected with ECHO viruses 6 and 19, consisting of dense particles with an average diameter of 14.4 mµ ranging from approximately 13.2 to 15.6 mµ for ECHO virus 6, and 14.5 mµ ranging from approximately 12.5 to 16.5 mµ for ECHO virus 19. These particles are clustered in hexagonal packages forming angles of 75° and 105°. The particles in most crystals are arranged in rows separated by a constant distance, the latter varying from one crystal to another and being approximately 1.5 and 2.5 times the distance between particles. Other particles were observed which, however, are not considered to be of viral nature.  相似文献   

13.
The immature megaspore mother cell of Ginkgo biloba is essentially spherical and is surrounded by a thick, complex wall. A large nucleus occupies the central region of the cell, and the organelles appear to be randomly arranged in the cytoplasm. With approaching maturity and the onset of meiosis, the cell elongates in the direction of the ovular axis. An extensive system of ER develops at the micropylar pole of the cell during elongation, and the plastids and mitochondria migrate to the opposite or chalazal pole. The micropylar end of the mature megaspore mother cell is usually devoid of plastids and mitochondria, but these organelles are densely packed in the chalazal end of the cell below the nucleus. The dictyosomes and dense spherosome-like bodies do not show such polarity in their distribution. At meiosis I plastids and mitochondria are, as a rule, restricted to the chalazal dyad cell that is destined to produce the functional megaspore. The wall of the megaspore mother cell consists of a middle lamella which is irregularly thickened, an outer wall layer resembling the walls of the surrounding nutritive cells, and an inner layer resembling the middle lamella in appearance.  相似文献   

14.
The ultrastructure of the merozoites of the parasite Barroussia schneiden (Bütschli, 1882) Reichenow & Schellack, 1912 in the intestinal cells of its centipede host, Lithobius forficatus (L) is described. The pellicle consists of a single outer and a double inner membrane under which there are 51 microtubules extending longitudinally. A micropore is present. The characteristic organelles and cytoplasmic inclusions of the merozoites of the Eimeriidac arc present: conoid, rhoptries (possibly 6), micronemes, nucleus with nueleolus, mitochondria with bulbous cristae, prominent Golgi complex, polysaccharide granules and granular endoplasmic reticulum.  相似文献   

15.
SYNOPSIS. Studies were made with the light microscope of live sporozoites of E. ninakohlyakimovae and E. ellipsoidalis as well as sporozoites fixed with Schaudinn's, Stieve's and Zenker's fluids, methanol and ethanol saturated with picric acid. Sporozoites were stained with Giemsa, bromphenol blue, modified PAS-AO, Feulgen, Harris’hematoxylin and eosin Y, and iron hematoxylin. Sporozoites of the above species as well as those of E. auburnensis and E. bovis were also fixed with glutaraldehyde and osmium tetroxide or negatively stained for study with the electron microscope. Living sporozoites had gliding, pivoting, flexing, and probing movements. Each sporozoite of each species was covered by a pellicle consisting of an outer limiting unit membrane that was continuous around the sporozoite and an inner membrane that terminated at the polar ring. Twenty-four subpellicular microtubules were longitudinally arranged just beneath the inner membrane. At the anterior end of the sporozoites was a protruded or retracted conoid composed of spirally-arranged fibrillar structures, 2 rings anterior to the conoid, and the polar ring, a thickening at the anterior termination of the microtubules and inner membrane. Other organelles observed with the electron microscope were a nucleus with or without a net-like nucleolus, club-shaped organelles, refractile bodies, micronemes, endoplasmic reticulum, Golgi apparatus, mitochondria with tubular cristae, micropores, lipoid-like bodies, oval polysaccharide bodies and ribosomes. The fine structure of these sporozoites is compared to that of related Sporozoa.  相似文献   

16.
The centrally directed neurite of the dorsal root neuroblast has been described from the period of its initial entrance into the neural tube until a well-defined dorsal root is formed. Large numbers of microtubules, channels of agranular reticulum, and clusters of ribosomes are found throughout the length of the early axons. The filopodia of the growth cone appear as long thin processes or as broad flanges of cytoplasm having a finely filamentous matrix material and occasionally small ovoid or elongate vesicles. At first the varicosity is a small expansion of cytoplasm, usually containing channels of agranular reticulum and a few other organelles. The widely dilated cisternae of agranular reticulum frequently found within the growth cone probably correspond to the pinocytotic vacuoles seen in neurites in tissue culture. The varicosities enlarge to form bulbous masses of cytoplasm, which may measure up to 5 µ in width and 13 µ in length. They contain channels of agranular reticulum, microtubules, neurofilaments, mitochondria, heterogeneous dense bodies, and a few clusters of ribosomes. Large ovoid mitochondria having ribonucleoprotein particles in their matrix are common. Dense membrane specializations are found at the basal surface of the neuro-epithelial cell close to the area where the early neurites first enter the neural tube.  相似文献   

17.
SYNOPSIS. Freeze-etch preparations of Toxoplasma gondii reveal details of structure and organelles in 3-dimensional relationships. The subpellicular microtubules and their relationship to the polar ring, the tripartite pellicle, the pellicle constituents, and the spatial relationship of the rhoptries to the conoid and conoid canal are clearly demarcated.  相似文献   

18.
Thin sections of the testicular follicles of the grasshopper Laplatacris dispar were studied under the electron microscope. In the primary spermatocytes, during meiotic prophase, three main regions can be recognized within the nucleus: (1) the nucleolus and associated nucleolar material; (2) the interchromosomal regions with the dense particles; and (3) the chromosomes. The nucleolus is generally compact and is surrounded by nucleolar bodies that comprise aggregations of dense round particles 100 to 250 A in diameter. A continuous transition can be observed between these particles and those found isolated or in short chains in the interchromosomal spaces. Particles of similar size (mean diameter of 160 A) can be found associated with the nuclear membrane and in the cytoplasm. The chromosomes show different degrees of condensation in different stages of meiotic prophase. The bulk of the chromosome appears to be made of very fine and irregularly coiled filaments of macromolecular dimensions. Their length cannot be determined because of the thinness of the section but some of them can be followed without interruption for about 1000 to 2000 A. The thickness of the chromosome filaments seems to vary with different stages of prophase and in metaphase. In early prophase, filaments vary between 28 ± 7 A and 84 ± 7 A with a mean of 47 A, in late prophase the mean is about 70 A. In metaphase the filaments vary between 60 and 170 A with a mean of about 100 A. Neither the prophase nor the metaphase chromosomes have a membrane or other inhomogeneities. The finding of a macromolecular filamentous component of chromosomes is discussed in relation to the physicochemical literature on nucleoproteins and nucleic acids and as a result it is suggested that the thinnest chromosome filaments (28 ± 7 A) probably represent single deoxyribonucleoprotein molecules.  相似文献   

19.
Colonies and spore suspensions of Streptomyces coelicolor were fixed for electron microscopy by the method of Kellenberger, Ryter, and Séchaud (1958). In thin sections the nuclear regions have a lower average density than the cytoplasm and the outlines of these regions correspond well with the profiles of the chromatinic bodies observed with the light microscope. The nuclear regions contain fibrils, about 5 mµ in diameter. In contrast, after fixation by the method of Palade (1952) the nuclear material is coagulated into irregular dense masses and tubular structures about 20 mµ in diameter, lying in a nuclear "vacuole." The significance of these observations is discussed in relation to the observations of other workers on the fine structure of the nuclear material of other bacteria and the chromosomes of higher cells.  相似文献   

20.
Representative viruses of the RI-APC group were observed with the electron microscope in thin sections of infected HeLa cells. The viral particles varied in density, were approximately 60 mµ in diameter and had a center to center spacing when close packed of about 65 mµ. Many of the less dense particles exhibited an internal body averaging 24 mµ in diameter. It was suggested that within the nucleus the virus differentiated from dense granular and reticular material and formed crystals. Disintegration of the crystals and disruption of the nuclear membrane with release of virus into the cytoplasm appeared to occur at any stage. No evidence to suggest development of the virus in the cytoplasm was obtained. It was possible to deduce the structure of the viral crystal from the electron micrographs. The viral particles are packed in a cubic body—centered lattice. Correlative histochemical observations in the light microscope which are now in progress revealed that the crystals and non-crystalline aggregates of virus were strongly Feulgen-positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号