首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
A Romero  R Lopez    P Garcia 《Journal of bacteriology》1990,172(9):5064-5070
We have sequenced a DNA fragment containing the pneumococcal bacteriophage HB-3 hbl gene, which codes for the phage lytic amidase. A remarkable nucleotide similarity (87.1%) between the lytA gene, coding for the pneumococcal amidase, the major autolysin of Streptococcus pneumoniae, and the hbl gene was found. This similarity completely disappeared outside the open reading frames coding for both amidases. The hbl gene transformed amidase-deficient strains of S. pneumoniae to the wild-type phenotype, and Southern blotting experiments provided evidence for recombination between donor and recipient genes. A comprehensive evaluation of these and previous results on the peptidoglycan hydrolases of S. pneumoniae and its bacteriophages suggested that recombination mechanisms participate in the evolution of the genes coding for these enzymes.  相似文献   

2.
Two novel chimeric pneumococcal cell wall lytic enzymes, named LC7 and CL7, have been constructed by in vitro recombination of the lytA gene encoding the major autolysin (LYTA amidase) of Streptococcus pneumoniae, a choline-dependent enzyme, and the cpl7 gene encoding the CPL7 lysozyme of phage Cp-7, a choline-independent enzyme. In remarkable contrast with previous chimeric constructions, we fused here two genes that lack nucleotide homology. The CL7 enzyme, which contains the N-terminal domain of CPL7 and C-terminal domain of LYTA, exhibited a choline-dependent lysozyme activity. This experimental rearrangement of domains might mimic the process that have generated the choline-dependent CPL1 lysozyme of phage Cp-1 during evolution, providing additional support to the modular theory of protein evolution. The LC7 enzyme, built up by fusion of the N-terminal domain of LYTA and the C-terminal domain of CPL7, exhibited an amidase activity capable of degrading ethanolamine-containing cell walls. The chimeric amidase behaved as an autolytic enzyme when it was cloned and expressed in S. pneumoniae. The chimeric enzymes provided new insights on the mechanisms involved in regulation of the host pneumococcal autolysins and on the participation of these enzymes in the process of cell separation. Furthermore, our experimental approach confirmed the basic role of the C-terminal domains in substrate recognition and revealed the influence of these domains on the optimal pH for catalytic activity.  相似文献   

3.
The nucleotide sequences of genes cpl7 and cpl9 of the Streptococcus pneumoniae bacteriophages Cp-7 and Cp-9, encoding the muramidases CPL-7 and CPL-9, respectively, have been determined. The N-terminal domains of CPL-7 and CPL-9 were virtually identical to that previously reported for the CPL-1 muramidase. The C-terminal domain of the CPL-7 muramidase, however, was different from those of the host amidase and the phage Cp-1 and Cp-9 lysozymes. Whereas all enzymes studied are characterized by repeated sequences at their C termini, the repeat-unit lengths are 20 amino acids (aa) in CPL-1, CPL-9 and in the host amidase, but 48 aa in CPL-7. Six repeated sequences represent the C-terminal domains of CPL-1, CPL-9 and the host amidase, and 2.8 perfect tandem repetitions that of CPL-7. The peculiar characteristics of the structure of CPL-7 muramidase correlate with its biochemical and biological properties. Whereas CPL-1, CPL-9 and the pneumococcal amidase strictly depend on the presence of choline-containing cell walls for activity, CPL-7 is able to degrade cell walls containing either choline or ethanolamine. These results support the previously postulated role for the C-terminal domain of these lytic enzymes in substrate recognition and provide further experimental evidence supporting the notion that the proteins have evolved by an exchange of modular units.  相似文献   

4.
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.  相似文献   

5.
Cp-1, a small virulent bacteriophage infecting Streptococcus pneumoniae, encodes its own lytic enzyme (CPL). A fragment of Cp-1 DNA containing the gene cpl coding for CPL was cloned and expressed in high amounts in Escherichia coli. CPL was purified to electrophoretic homogeneity by using affinity chromatography on choline-Sepharose (T. Briese and R. Hakenbeck, Eur. J. Biochem. 146:417-427, 1985), and the enzyme showing a Mr of 39,000 was characterized as a muramidase. This muramidase required for in vivo and in vitro activity the presence of choline in the teichoic acids of the pneumococcal cell walls. Free choline or lipoteichoic acid noncompetitively inhibited the activity of CPL.  相似文献   

6.
The structures of the choline-dependent pneumococcal murein hydrolases, LYTA amidase and CPL1 lysozyme, and the choline-independent CPL7 lysozyme were analysed by controlled proteolytic digestions. The trypsin cleavage of the CPL1 and CPL7 lysozymes produced two resistant polypeptides, F1 and F7 respectively, corresponding to the N-terminal domain of the enzymes, whereas the amidase LYTA was completely hydrolysed by the protease. Interestingly, the F1 and F7 fragments showed a low, but significant, choline-independent lysozyme activity. Choline reduced the rate of proteolytic hydrolysis of choline-dependent enzymes, suggesting that the C-terminal choline-binding domain adopts a more resistant conformation in the presence of the ligand. On the other hand, the regions encoding the N-terminal domains of the three enzymes have been cloned and expressed in Escherichia coli, showing that these domains adopt an active conformation even in the absence of their C-terminal domains. The lower activity shown by the catalytic domains when compared with that of the complete enzymes suggests that the acquisition of a substrate-binding domain represents a noticeable evolutionary advantage for enzymes that interact with polymeric substrates, allowing them to achieve a higher catalytic efficiency. These results strongly reinforce the hypothesis that the pneumococcal murein hydrolases have been originated by fusion of two structural and functional independent domains, and provide new experimental support to the theory of modular evolution of proteins.  相似文献   

7.
A Romero  R Lopez    P Garcia 《Journal of virology》1992,66(5):2860-2864
Combined Southern blot hybridization analyses of DNA digests of several clinical strains of Streptococcus pneumoniae have revealed the presence of a gene (hblR), or part of it, similar to the hbl7 gene coding for the cell wall lytic enzyme of the temperate HB-746 phage. The results confirmed that the genome of HB-746, which contains protein covalently linked to the 5' ends of its DNA, becomes integrated into the host strain 8R1 and showed that both the host and phage attachment sites, attB and attP, lie downstream of the 3' end of the structural region of the hblR and hbl7 genes, respectively. The data reported also highlight some evolutionary relationships between phage and bacteria.  相似文献   

8.
A pneumococcal recombinant plasmid, pRG2, containing the lytA gene that codes for the pneumococcal N-acetylmuramoyl-L-alanine amidase has been constructed using the pneumococcal plasmid pLS1 as a vector. pRG2 was introduced by genetic transformation into a mutant of Streptococcus pneumoniae (M31) that has a complete deletion of the lytA gene. The transformed strain (M51) grew at a normal growth rate as 'diplo' cells and underwent autolysis at the end of the exponential phase of growth, two properties that had been lost in the deleted mutant M31. M51 lysed very rapidly at the end of the exponential phase when the cells were grown in choline-containing medium probably because of the higher level of amidase activity present in this strain as compared to the lysis-prone strain M11. These findings show that the expression of the plasmid-linked gene was placed under the mechanism(s) of control of the cell during the exponential phase. Our results demonstrate that the physiological role of the pneumococcal amidase was to catalyze the separation of the daughter cells at the end of the cell division to produce diplo cells; in addition we have also confirmed the basic role of this autolysin in the bacteriolytic nature of beta-lactam antibiotics.  相似文献   

9.
The cloning in Escherichia coli of the 3' moieties of the lytA and cpl-1 genes is described, coding for the C-terminal regions of the lytic amidase of Streptococcus pneumoniae and the phage Cp-1 lysozyme, respectively. The truncated genes were overexpressed in E. coli and the purified polypeptides showed a great affinity for choline, although they were devoid of cell wall-degrading activity. Biochemical and circular dichroism analyses indicated that these are the domains responsible for the specific recognition of the choline-containing pneumococcal cell walls by the lytic enzymes. The data presented here suggested that these choline-binding domains can function independently of their catalytic domains.  相似文献   

10.
Two new temperate bacteriophages exhibiting a Myoviridae (phiB6) and a Siphoviridae (phiHER) morphology have been isolated from Streptococcus mitis strains B6 and HER 1055, respectively, and partially characterized. The lytic phage genes were overexpressed in Escherichia coli, and their encoded proteins were purified. The lytAHER and lytAB6 genes are very similar (87% identity) and appeared to belong to the group of the so-called typical LytA amidases (atypical LytA displays a characteristic two-amino-acid deletion signature). although they exhibited several differential biochemical properties with respect to the pneumococcal LytA, e.g., they were inhibited in vitro by sodium deoxycholate and showed a more acidic pH for optimal activity. However, and in sharp contrast with the pneumococcal LytA, a short dialysis of LytAHER or LytAB6 resulted in reversible deconversion to the low-activity state (E-form) of the fully active phage amidases (C-form). Comparison of the amino acid sequences of LytAHER and LytAB6 with that of the pneumococcal amidase suggested that Val317 might be responsible for at least some of the peculiar properties of S. mitis phage enzymes. Site-directed mutagenesis that changed Val317 in the pneumococcal LytA amidase to a Thr residue (characteristic of LytAB6 and LytAHER) produced a fully active pneumococcal enzyme that differs from the parental one only in that the mutant amidase can reversibly recover the low-activity E-form upon dialysis. This is the first report showing that a single amino acid residue is involved in the conversion process of the major S. pneumoniae autolysin. Our results also showed that some lysogenic S. mitis strains possess a lytA-like gene, something that was previously thought to be exclusive to Streptococcus pneumoniae. Moreover, the newly discovered phage lysins constitute a missing link between the typical and atypical pneumococcal amidases known previously.  相似文献   

11.
12.
In an attempt to identify and characterize components of a heme uptake system of Haemophilus somnus, an Escherichia coli cosmid library of H. somnus genomic DNA was screened for the ability to bind hemin (Hmb+). The Hmb+ phenotype was associated with a 7,814-bp HindIII fragment of H. somnus DNA that was subcloned and sequenced. Thirteen open reading frames (orfs) were identified, all transcribed in one direction, and transposon mutagenesis identified orf7 as the gene associated with the Hmb+ phenotype. Orf7 (178 amino acids) has extensive homology with the lysozymes of bacteriophages P-A2, P21, P22, PZA, phi-29, phi-vML3, T4, or HP1. The orf7 gene complemented the lytic function of the K gene of phage P2 and the R gene of phage lambda. A lysozyme assay using supernatants from whole-cell lysates of E. coli cultures harboring plasmid pRAP501 or pGCH2 (both of which express the orf7 gene product) exhibited significant levels of lysozyme activity. The orf6 gene upstream of orf7 has the dual start motif common to the holins encoded by lambdoid S genes, and the orf6 gene product has significant homology to the holins of phages HP1 and P21. When expressed from a tac promoter, the orf6 gene product caused immediate cell death without lysis, while cultures expressing the orf7 gene product grew at normal rates but lysed immediately after the addition of chloroform. Based on this data, we concluded that the Hmb+ phenotype was an artifact resulting from the expression of cloned lysis genes which were detrimental to the E. coli host. The DNA flanking the cloned lysis genes contains orfs that are similar to structural and DNA packaging genes of phage P2. Polyclonal antiserum against Orf2, which is homologous to the major capsid precursor protein (gpN) of phage P2, detected a 40,000-M(r) protein expressed from pRAP401 but did not detect Orf2 in H. somnus, lysates. The phage-like DNA was detected in the serum-susceptible preputial strains HS-124P and HS-127P but was absent from the serum-resistant preputial strains HS-20P and HS-22P. Elucidation of a potential role for this cryptic prophage in the H. somnus life cycle requires more study.  相似文献   

13.
14.
E Díaz  R Lpez    J L García 《Journal of bacteriology》1992,174(17):5516-5525
The first temperate bacteriophage (EJ-1) of Streptococcus pneumoniae with Myoviridae morphotype A1 isolated from a clinical atypical strain has been purified and characterized. This phage has a double-stranded linear genome about 42 kb long, but in contrast to the other pneumococcal temperate phages that have been characterized so far, EJ-1 does not contain any protein covalently linked to it. We have sequenced a fragment of EJ-1 DNA containing the ejl gene, encoding a cell wall lytic enzyme (EJL amidase). This gene has been cloned and expressed in Escherichia coli, and the EJL enzyme was purified and biochemically characterized as an N-acetylmuramyl-L-alanine amidase that shares many similarities with the major pneumococcal autolysin. The EJL amidase is a choline-dependent enzyme that needs the process of conversion to achieve full enzymatic activity, but in contrast to the wild-type pneumococcal LYTA amidase, this process was found to be reversible. Comparisons of the primary structure of this new lytic enzyme with that of the other cell wall lytic enzymes of S. pneumoniae and its bacteriophages characterized so far provided new insights as to the evolutionary relationships between phages and bacteria. The nucleotide sequences of the attachment site (attP) on the phage genome and one of the junctions created by the insertion of the prophage were determined. Interestingly, the attP site was located near the ejl gene, as previously observed for the pneumococcal temperate bacteriophage HB-3 (A. Romero, R. López, and P. García, J. Virol. 66:2860-2864, 1992). A stem-and-loop structure, some adjacent direct and inverted repeats, and two putative integration host factor-binding sites were found in the att sites.  相似文献   

15.
Bacterial autolysins are endogenous enzymes that specifically cleave covalent bonds in the cell wall. These enzymes show both substrate and bond specificities. The former is related to their interaction with the insoluble substrate whereas the latter determine their site of action. The bond specificity allows their classification as muramidases (lysozymes), glucosaminldases, amidases, and endopeptidases. To demonstrate that the autolysin (LYC muramidase) of Clostridium acetobutylicum ATCC824 presents a domainal organization, a chimeric gene (clc) containing the regions coding for the catalytic domain of the LYC muramidase and the choline-binding domain of the pneumococcal phage CPL1 muramidase has been constructed by in vitro recombination of the corresponding gene fragments. This chimeric construction codes for a choline-binding protein (CLC) that has been purified using affinity chromatography on DEAE-cellulose. Several biochemical tests demonstrate that this rearrangement of domains has generated an enzyme with a choline-dependent muramidase activity on pneumococcal cell walls. Since the parental LYC muramidase was cholineindependent and unable to degrade pneumococcal cell walls, the formation of this active chimeric enzyme by exchanging protein domains between two enzymes that specifically hydrolyse cell walls of bacteria belonging to different genera shows that a switch on substrate specificity has been achieved. The chimeric CLC muramidase behaved as an autolytic enzyme when it was adsorbed onto a live autolysin-defective mutant of Streptococcus pneumoniae. The construction described here provides experimental support for the theory of modular evolution which assumes that novel proteins have evolved by the assembly of preexisting polypeptide units.  相似文献   

16.
The autolytic enzyme (an N-acetylmuramyl-L-alanine amidase) of a clinical isolate, strain 101/87, which is classified as an atypical pneumococcus, has been studied for the first time. The lytA101 gene coding for this amidase (LYTA101) has been cloned, sequenced, and expressed in Escherichia coli. The LYTA101 amidase has been purified and shown to be similar to the main autolytic enzyme (LYTA) present in the wild-type strain of Streptococcus pneumoniae, although it exhibits a lower specific activity, a higher sensitivity to inhibition by free choline, and a modified thermosensitivity with respect to LYTA. Most important, in contrast with the LYTA amidase, the activity of the LYTA101 amidase was inhibited by sodium deoxycholate. This property is most probably responsible of the deoxycholate-insensitive phenotype shown by strain 101/87. Phenotypic curing of strain 101/87 by externally adding purified LYTA or LYTA101 amidase restored in this strain some typical characteristics of the wild-type strain of pneumococcus (e.g., formation of diplo cells and sensitization to lysis by sodium deoxycholate), although the amount of the LYTA101 amidase required to restore these properties was much higher than in the case of the LYTA amidase. Our results indicate that modifications in the primary structure or in the mechanisms that control the activity of cell wall lytic enzymes seem to be responsible for the characteristics exhibited by some strains of S. pneumoniae that have been classically misclassified and should be now considered atypical pneumococcal strains.  相似文献   

17.
18.
I Riede 《Journal of bacteriology》1987,169(7):2956-2961
The lysis gene t of the T-even-like bacteriophage K3 has been cloned and sequenced. The gene codes for a protein with a predicted molecular weight of 25,200. Expression of the complete lysis protein was impossible, but peptides complementing T4 amber mutants in t are described. No known lysis protein of other phages is homologous to protein T. Also, the Escherichia coli phospholipase A is different from protein T. CelB, the lysis protein of the colicin E2 operon, shows a similarity to protein T. Sequences of colicins A, E1, and E2 are related to gene 38 sequences, the gene preceding t and coding for the phage adhesin. A common origin for colicin genes and phage genes is discussed, and a protein region in colicins that is responsible for receptor recognition is predicted.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号