首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between feather morphogenesis, histogenesis, and biochemical differentiation were examined by recombining backskin epidermis and dermis, from chick embryos (Hamburger-Hamilton stages 27-31), with an intervening Nucleopore filter (pore size of 0.4 micron). The filter inhibited normal feather morphogenesis and histogenesis of barb ridges, yet feather-like filaments, which were free of dermal cells, formed from the epidermal cells. Using indirect immunofluorescence, with antiserum against alpha- and beta-keratins, the biochemical differentiation of the feather-like filaments was compared to normal feathers. In the feather-like filaments resulting from tissues of stages 27-29, cells containing beta keratins were occasionally seen at the periphery of the filaments, yet cells containing alpha-keratins were inappropriately located throughout the filaments. In a few feather-like filaments on recombinants resulting from tissues of stages 29.5-31, cells positive for beta-keratins were found in the center of the filament, but again alpha-keratins were also found. Surrounding these cells there were several layers of cells, arranged circumferentially, resembling sheath cells. Some sheath-like cells contained beta-keratins. We conclude that although feather epidermal cells, which are separated from their dermis by a Nuclepore filter, can undergo limited morphogenesis and the production of alpha- and beta-keratins, normal feather morphogenesis, histogenesis, and biochemical differentiation require the intimate associations of epidermis and dermis.  相似文献   

2.
3.
4.
Summary Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attachedpatch measurements revealed two types of high conductance (100–250 pS) channels, which rapidly activated upon 50–100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3mm) or high K+ (143mm) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20–200 msec (depending on the stimulus) upon depolarizing voltage steps from <–60 mV to >–30 mV. It inactivates almost completely with a time constant of 2–3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1–2 sec) followed by a slow phase (>20 sec). The second whole-cell conductance activates at positive membrane potentials of >+50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

5.
Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attached-patch measurements revealed two types of high conductance (100-250 pS) channels, which rapidly activated upon 50-100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3 mM) or high K+ (143 mM) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20-200 msec (depending on the stimulus) upon depolarizing voltage steps from less than -60 mV to greater than -30 mV. It inactivates almost completely with a time constant of 2-3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1-2 sec) followed by a slow phase (greater than 20 sec). The second whole-cell conductance activates at positive membrane potentials of greater than +50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl- or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

6.
The shape, distribution, and orientation of peridermal cells were examined in the dorsolumbar skin of 712-day chick embryos. Most feather rudiments of middorsal and lateral rows showed a marked cephalocaudal polarity. A similar polarity was found in the prospective rudiments of skin areas lateral to the last-formed row. On the cranial slope and apex of rudiments, cells are convex and predominantly elongated at right angles with respect to the cephalocaudal axis, whereas on the caudal slope, most cells are flat, polygonal, surrounded by a border-line ridge, and oriented predominantly with their long axis parallel to the cephalocaudal axis. The significance of this pattern is discussed in view of the fact that the epidermis is the determinant tissue in feather orientation.  相似文献   

7.
Differentiation of lens fibers in explanted embryonic chick lens epithelia   总被引:8,自引:0,他引:8  
Central regions of explanted lens epithelia from 6-day-old chick embryos were maintained in tissue culture for 4 weeks to determine the extent to which lens fiber differentiation would progress in vitro. Cellular outgrowth from the explants created 3 distinct zones; namely, a thick central zone, a thicker annular zone and a flattened peripheral zone. Cells of the central and annular zones underwent morphological and biochemical changes which correspond to the differentiation of lens fibers in vivo. The mean cell length increased a minimum of 25-fold. The nuclei in the longer cells became pycnotic; DNA remained in the nuclei but accumulated single-strand breaks. The cytoplasm became filled with a homogeneous granular matrix. Organelle density decreased, but microtubules persisted, mostly along surface membranes; free ribosomal clusters were present. There were occasional desmosomes and infoldings of cell membranes. The proportion of ribosomal RNA synthesized decreased relative to the total RNA synthesized, especially in the central zone. Finally, the proportion of delta crystallin synthesized increased to 40–50% of the newly synthesized protein. These data suggest that the transformation of lens epithelial cells into fibers results from a programmed differentiation which can take place in tissue culture.  相似文献   

8.
9.
10.
Nerve growth factor in skeletal tissues of the embryonic chick   总被引:3,自引:0,他引:3  
Summary This study demonstrates, via immunohistochemistry and bioassay, the presence of NGF in embryonic bone and cartilage of the chick. Embryos were killed on days 6–9 of incubation at 12 h intervals, and on days 10–18 at 24 h intervals. Paraffin-embedded sections of hind limbs or buds were immunostained with a polyclonal antibody against NGF and the biotin-avidin-horseradish peroxidase technique. Immunostaining was positive in both bone and cartilage, with cartilage staining more intensely. For bioassay, bones from the hind limbs of 9- and 12-day embryos were fast-frozen, lyophilized, and homogenized with Medium 199 (M199). Dorsal root ganglia from 8-day embryos were cultured for 24–36 h with rooster plasma, M199, and varying concentrations of bone homogenate. Significant neurite outgrowth was seen, with the greatest response elicited by 12-day bone homogenate. Addition of anti-NGF to the cultures abolished neurite outgrowth. The results indicate that NGF is present in cartilage and bone of the chick embryo; it may determine the density of sympathetic innervation to the developing skeletal tissues.  相似文献   

11.
Summary Three types of tissue (hypoblast, germ wall and epiblast) were dissected from early chick embryos and explanted on Falcon plastic dishes. After they had settled and spread, the explants were fixed, usually within 18–24 h after explantation, and sections were cut through the tissue and the Falcon dish. The closeness of the cells to the substrate varied even within the same explant, but the epiblast tended to be closer to the substrate than did the hypoblast or germ wall. Plaques were present in all three tissues in regions where the cell processes contacted the substrate. Extensive desmosomes were visible in the epiblast explants, small desmosomes were present in the germ wall explants, but desmosomes were never seen in hypoblast explants. These differences in cell/substrate and cell/cell morphology are discussed in relation to the different behavioural characteristics of the three tissues. Some mixed cultures were also examined by electron microscopy. When the epiblast was confronted with either hypoblast or germ wall, it underlapped them at the region of contact.  相似文献   

12.
Early chick embryonic cells can form clones in agarose cultures   总被引:2,自引:0,他引:2  
Early chick embryonic cells prior to the formation of the primitive streak, have been cultured in a two-layer soft-agarose system. Single, primary cells when grown in this system were capable of producing colonies ranging in size from 30 to 100 cells. The plating efficiency varied between 1 and 5% and the colonies remained viable for about 2 weeks. We believe this is the first report of normal, non-passaged cells which show anchorage-independent growth properties by forming colonies in a standard agarose culture in the absence of additional factors. The importance of being able to use normal monoclonal embryonic cell populations in studying early developmental processes is also discussed.  相似文献   

13.
pp60c-src Kinase is in chick and human embryonic tissues   总被引:28,自引:0,他引:28  
The normal cellular protein pp60c-src is a tyrosine-specific protein kinase that is homologous to the transforming protein of Rous sarcoma virus (RSV) but its function is unknown. The expression of pp60c-src in chick and human embryonic tissues was monitored by the immune complex protein kinase assay, Western transfer analysis, and immunocytochemical staining at the light microscope level. pp60c-src kinase was expressed in the head and trunk regions of the chick embryo at all stages of development examined; however, expression increased significantly during the major period of organogenesis (Hamburger and Hamilton stages 21 to 32). Western transfer analysis showed that the amount of pp60c-src protein increased in parallel with the increase in kinase activity. Highest levels of pp60c-src kinase were present in the neural tube, brain, and heart of the stage 32 chick embryo. Lower levels of activity were found in eye, limb bud, and liver. Immunocytochemical staining of the neural tube region and heart of the chick confirmed the results of biochemical analysis and showed immunoreactive pp60c-src distributed throughout the neural tube and heart. The distribution of pp60c-src kinase in human fetal tissues was similar to that in the chick embryo; elevated levels of pp60c-src kinase were present in cerebral cortex, spinal cord, and heart, but all other tissues examined expressed some pp60c-src kinase. The results of our studies suggest that pp60c-src plays a fundamental role in an aspect of cellular metabolism that is particularly important in electrogenic tissues.  相似文献   

14.
15.
Stratospheroids are three-dimensional cellular spheres which develop in vitro through the proliferation and differentiation of retinal neuroepithelial precursor cells. We investigated synapse formation in stratospheroids by analyzing the development of aggregates of synapse-associated molecules and of electron microscopically identifiable synaptic specializations. Our results show that the first aggregates of the GABA(A) receptor, the glycine receptor, and gephyrin appear in the inner plexiform layer after 8 days in culture simultaneously with the development of the first active zones and postsynaptic densities. In contrast, presynaptic molecules including synaptophysin could be detected in the inner plexiform layer before synaptogenesis, suggesting functions for these molecules in addition to neurotransmitter exocytosis at mature synapses. Similar to the retina in vivo, synapses were not found in the nuclear layers of stratospheroids. We also analyzed the isoform pattern, expression, and distribution of the extracellular matrix molecule agrin, a key regulator during formation, maintenance, and regeneration of the neuromuscular junction. In stratospheroids, several agrin isoforms were expressed as highly glycosylated proteins with an apparent molecular weight of approximately 400 kDa, similar to the molecular weight of agrin in the retina in vivo. The expression specifically of the neuronal isoforms of agrin was concurrent with the onset of synaptogenesis. Moreover, the neuronal agrin isoforms were exclusively found in the synapse-containing inner plexiform layer, whereas other agrin isoforms were associated also with the inner limiting membrane and with Müller glial cells. These results show that synapse formation is very similar in stratospheroids and in the retina in vivo, and they suggest an important role for agrin during CNS development.  相似文献   

16.
We reported the identification, purification and characterization of a low molecular weight protein (Ch 21) expressed in vitro by differentiating chondrocytes at a late stage of development and observed in vivo in the growth plate region of the long bones at the border between hypertrophic cartilage and newly formed bone (Descalzi Cancedda, F., P. Manduca, C. Tacchetti, P. Fossa, R. Quarto, R. Cancedda, J. Cell Biol. 107, 2455-2463 (1988]. In this article, the synthesis and location of Ch 21 protein in the chick embryo tibia at late stage of development were further investigated. Ch 21 was observed in the cartilage matrix surrounding marrow cavities and in the prearticular outer layer by immunolocalization. In addition, the timing of Ch 21 appearance during the tibia development and its distribution in the growth plate region was better defined. We first observed presence of Ch 21 in the perichondral mid-diaphyseal sleeve of 7-day-old tibia. Ch 21 antibodies stained also the newly formed bone. Synthesis and secretion in the culture medium of Ch 21 protein was observed when bone fragments or cultured osteoblasts isolated from 19-day-old embryo tibiae were labeled in vitro. A search for the presence of Ch 21 in the chick embryo sternum was performed. The synthesis of Ch 21, both in the presumptive calcification cranial portion and in the permanent cartilaginous caudal portion of the sternum, was shown by metabolic labeling of tissue slices.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1,9-Dideoxyforskolin inhibits proteoglycan synthesis and xyloside-initiated glycosaminoglycan (GAG) synthesis in chick embryo chondrocytes. Dideoxyforskolin does not affect the length of xyloside-initiated GAG chains secreted into the medium but chains from the dense proteoglycan secreted into the medium appear slightly longer. Incorporation of labeled serine into the dense proteoglycan and subsequent digestion with Pronase revealed a dramatic decrease in percent of total radioactivity associated with GAG chains in the proteoglyean from cultures treated with forskolin or dideoxyforskolin. These observations suggest that these diterpenes have a specific inhibitory effect on chain initiation reactions and thus may be useful tools in the study of proteoglycan synthesis and processing.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号