首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quorum sensing (QS) is a mechanism by which gram-negative bacteria regulate their gene expression by making use of cell density. QS is triggered by a small molecule known as an autoinducer. Typically, gram-negative bacteria such as Vibrio produce signaling molecules called acyl homoserine lactones (AHLs). However, their levels are very low, making them difficult to detect. We used thin layer chromatography (TLC) to examine AHLs in different Vibrio species, such as Vibrio alginolyticus, Vibrio parahemolyticus, and Vibrio cholerae, against a standard- Chromobacterium violaceum. Further, AHLs were characterised by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC–MS). C4-HSL (N- butanoyl- L- homoserine lactone), C6-HSL (N- hexanoyl- L- homoserine lactone), 3-oxo-C8-HSL (N-(3-Oxooctanoyl)-DL-homoserine lactone), C8-HSL (N- octanoyl- L- homoserine lactone), C110-HSL (N- decanoyl- L- homoserine lactone), C12-HSL (N- dodecanoyl- L- homoserine lactone) and C14-HSL (N- tetradecanoyl- L- homoserine lactone) were identified from Vibrio. These results may provide a basis for blocking the AHL molecules of Vibrio, thereby reducing their pathogenicity and eliminating the need for antimicrobials.  相似文献   

2.
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.  相似文献   

3.
4.
Quorum sensing (QS) signals have been considered to play important roles in biofilm development and in the attractiveness of biofilms to higher organisms in marine ecosystem. In this study, bacterial QS signalsacylated homoserine lactone derivatives (AHLs) were detected in 2-, 4-, and 6-day-old subtidal biofilms by using AHLs reporter strains. N-dodecanoyl-homoserine lactone (C12-HSL) was identified in 6-day-old biofilm at a concentration of 9.04 μg cm−minus;2 (3.36 mmol l−minus;1). To investigate the possible role of AHLs in the consequent eventlarval settlement of the polychaete Hydroides elegans onto subtidal biofilmsseven biofilm-derived bacteria that effectively induced larval settlement of H. elegans, were screened for AHL production. One of them, the Vibrio sp. UST950701-007, produced N-hexanoyl-homoserine lactone (C6-HSL). Larval settlement bioassay showed that C6-HSL, C12-HSL, and 3-oxo-octanoyl-homoserine lactone (3-oxo-C8-HLS) at certain concentrations induced some initial larval settlement behaviors such as reducing swimming speed, crawling on the bottom. However, these AHLs did not effectively induce larval settlement in comparison to the effective settlement inducer 3-isobutyl-1-methylxanthine. The possible chemokinetic mechanism and indirect effects of AHLs on larval settlement are suggested.  相似文献   

5.
Mou R  Bai F  Duan Q  Wang X  Xu H  Bai Y  Zhang X  Jin S  Qiao M 《FEMS microbiology letters》2011,324(2):173-180
The Pseudomonas aeruginosa quorum sensing (QS) system is controlled by the signal molecules acyl homoserine lactones (AHLs) that are synthesized from acyl enoyl-acyl carrier proteins (acyl-ACPs) provided by the fatty acid biosynthesis cycle. Pfm (PA2950), an enoyl-CoA reductase, has previously been shown to affect swimming mobility and fatty acid biosynthesis. In this report, we further show that pfm influences bacterial adherence to human cells. Microarray assay results suggest that pfm affects bacterial adherence through its influence on the QS system. Further experiments confirmed that the pfm mutant strain produces significantly less QS signal molecules than the corresponding wild-type strain. Using strains Escherichia coli DH5α(pECP64, lasB'-lacZ) and E.?coli DH5α(pECP61.5, rhlA'-lacZ), biosensors for N-(3-oxododecanoyl) homoserine lactone (3O-C(12) -HSL) and N-butyryl homoserine lactone (C(4) -HSL), respectively, we found that pfm mutant strain produces decreased amounts of both signal molecules. Elastase activity and pyocyanin measurements further confirmed the reduced levels of 3O-C(12) -HSL and C(4) -HSL in the pfm mutant. Finally, bacterial virulence, as assessed by the Caenorhabditis elegans worm killing assay, is decreased in the pfm mutant. Taken together, these data indicate that pfm can be an important target for the control of P.?aeruginosa infectivity.  相似文献   

6.
Quorum sensing (QS) is a mechanism by which diverse microorganisms can control specific processes in response to population density. A relatively well-known form of QS among Proteobacteria involves production and subsequent response to acylated homoserine lactones (AHLs). Quorum sensing inhibition (QSI), targeting AHL-dependent signaling, has been reported as a strategy for the control of biofilm formation used by several marine organisms. We developed a simple soft agar overlay protocol, based on pigmentation inhibition, to rapidly screen for the presence of potential QSI by bacteria and plants. For bacterial screens, test organisms are first streaked onto their appropriate media and incubated overnight. For plant screens, the plant material (leaf, stem, flower, etc.) is placed onto LB agar. The bacterial growth or plant samples are then covered with an overlay of LB soft agar containing an inoculum of either Pseudomonas aureofaciens 30-84 or Chromobacterium violaceum ATCC 12472 (indicator cultures) and then incubated overnight. These indicator bacteria regulate pigment production by N-hexanoyl-HSL (C6-HSL) QS and are readily inhibited by AHL analogues and other antagonists. QSI is indicated by the lack of pigment production of the indicator culture in the vicinity of the test sample. Growth inhibition of the indicator culture indicates possible antibiotic production. Two different biosensor organisms based on derivatives of Agrobacterium tumefaciens and C. violaceum, capable of detecting a range of AHLs were used to determine whether QSI is due to the production of interfering AHLs competing with the C6-HSL regulation of C. violaceum and P. aureofaciens pigment production. This simple protocol will facilitate the screening of multiple organisms for the production of potential antifouling compounds.  相似文献   

7.
We studied the quorum sensing (QS) system and the related homoserine lactones (HSLs) observing Pseudomonas aeruginosa invasion using the epithelial cell monolayer penetration assay model. Compared to the PAO1 wild-type, the QS mutants, DeltalasI and DeltarhlI, were compromised in their capacity to invade. The decreased invasiveness of DeltarhlI was restored by adding 100 microM exogenous C(4)-HSL. However, the decreased invasiveness of an efflux mutant, DeltamexAB-oprM, was not restored in the presence of exogenous HSLs. The QS system partially plays a role in P. aeruginosa invasion; however, C(4)-HSL and 3-O-C(12)-HSL are not the essential determinants for invasiveness for P. aeruginosa.  相似文献   

8.
AIMS: To profile the quorum-sensing (QS) signals in Yersinia ruckeri and to examine the possible regulatory link between QS signals and a typical QS-regulated virulence phenotype, a protease. METHODS AND RESULTS: Liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) showed that Y. ruckeri produced at least eight different acylated homoserine lactones (AHLs) with N-(3-oxooctanoyl)-L-homoserine lactone (3-oxo-C8-HSL) being the dominant molecule. Also, some uncommon AHL, N-(3-oxoheptanoyl)-L-homoserine lactone (3-oxo-C7-HSL) and N-(3-oxononanoyl)-L-homoserine lactone (3-oxo-C9-HSL), were produced. 3-oxo-C8-HSL was detected in organs from fish infected with Y. ruckeri. Protease production was significantly lower at temperatures above 23 degrees C than below although growth was faster at the higher temperatures. Neither addition of sterile filtered high-density Y. ruckeri culture supernatant nor the addition of pure exogenous AHLs induced protease production. Furthermore, three QS inhibitors (QSIs), sulfur-containing AHL analogues, did not inhibit protease production in Y. ruckeri. CONCLUSIONS: Exogenous AHL or sulfur-containing AHL analogues did not influence the protease production indicating that protease production may not be QS regulated in Y. ruckeri. SIGNIFICANCE AND IMPACT OF THE STUDY: The array of different AHLs produced indicates that the QS system of Y. ruckeri is complex and could involve several regulatory systems. In this case, neither AHLs nor QSI would be likely to directly affect a QS-regulated phenotype.  相似文献   

9.
In cell-free Yersinia pseudotuberculosis culture supernatants, we have chemically characterized three N-acyl homoserine lactone (AHL) molecules, N-octanoyl homoserine lactone (C8-HSL), N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl homoserine lactone (C6-HSL). We have identified, cloned and sequenced two pairs of LuxR/I homologues termed YpsR/I and YtbR/I. In Escherichia coli at 37 degrees C, YpsI and YtbI both synthesize C6-HSL, although YpsI is responsible for 3-oxo-C6-HSL and YtbI for C8-HSL synthesis respectively. However, in a Y. pseudotuberculosis ypsI-negative background, YtbI appears capable of adjusting the AHL profile from all three AHLs at 37 degrees C and 22 degrees C to the absence of 3-oxo-C6-HSL at 28 degrees C. Insertion deletion mutagenesis of ypsR leads to the loss of C8-HSL at 22 degrees C, which suggests that at this temperature the YpsR protein is involved in the hierarchical regulation of the ytbR/I locus. When compared with the parent strain, the ypsR and ypsI mutants exhibit a number of phenotypes, including clumping (ypsR mutant), overexpression of a major flagellin subunit (ypsR mutant) and increased motility (both ypsR and ypsI mutants). The clumping and motility phenotypes are both temperature dependent. These data are consistent with a hierarchical quorum-sensing cascade in Y. pseudotuberculosis that is involved in the regulation of clumping and motility.  相似文献   

10.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C(6)-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C(9)-CPA), had a strong inhibitory effect on prodigiosin production. C(9)-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C(9)-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C(6)-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C(9)-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

11.
12.
Nine Acinetobacter strains from patients and hospital environment were analyzed for virulence markers, quorum sensing signal production, and the presence of luxI and luxR genes. The strains had several properties in common: growth in iron limited condition, biofilm formation, and no active protease secretion. Significantly higher catechol production was determined in patient isolates (P < 0.03), but other invasiveness markers, such as lipase secretion, amount of biofilm, cell motility, antibiotic resistance, and hemolysin production, showed large variability. Notably, all members of the so-called A. calcoaceticus-A. baumannii complex, regardless of whether the source was a patient or environmental, secreted mediumto long-chain N-acyl homoserine lactones (AHL) and showed blue light inhibition of cell motility. In these strains, a luxI homologue with a homoserine lactone synthase domain and a luxR putative regulator displaying the typical AHL binding domain were identified.  相似文献   

13.
Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum''s adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum''s cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.  相似文献   

14.
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).  相似文献   

15.
Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules to coordinate their group behavior. Recently, it was shown that plants can perceive and respond to these bacterial AHLs. However, little is known about the molecular mechanism underlying the response of plants to bacterial QS signals. In this study, we show that the promotion of root elongation in wild type Arabidopsis thaliana induced by the AHLs N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) or N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) was completely abolished in plants with loss-of-function mutations in two candidate G-protein Coupled Receptors (GPCRs), Cand2 and Cand7. Furthermore, real-time PCR analysis revealed that the expression levels of Cand2 and Cand7 were elevated in plants treated with 3OC6-HSL or 3OC8-HSL. These results suggest that Cand2 and Cand7 are involved in the regulation of root growth by bacterial AHLs and that GPCRs play a role in mediating interactions between plants and microbes.  相似文献   

16.
17.
18.
Serratia marcescens SS-1 produces at least four N-acylhomoserine lactones (AHLs) which were identified using high-resolution mass spectrometry and chemical synthesis, as N-(3-oxohexanoyl) homo-serine lactone (3-oxo-C6-HSL), N-hexanoyl- (C6-HSL), N-heptanoyl (C7-HSL) and N-octanoyl- (C8-HSL) homoserine lactone. These AHLs are synthesized via the LuxI homologue SpnI, and regulate via the LuxR homologue SpnR, the production of the red pigment, prodigiosin, the nuclease, NucA, and a biosurfactant which facilitates surface translocation. spnR overexpression and spnR gene deletion show that SpnR, in contrast to most LuxR homologues, acts as a negative regulator. spnI overexpression, the provision of exogenous AHLs and spnI gene deletion suggest that SpnR is de-repressed by 3-oxo-C6-HSL. In addition, long chain AHLs antagonize the biosurfactant-mediated surface translocation of S. marcescens SS-1. Upstream of spnI there is a gene which we have termed spnT. spnI and spnT form an operon and although database searches failed to reveal any spnT homologues, overexpression of this novel gene negatively affected both sliding motility and prodigiosin production.  相似文献   

19.
20.
SsoPox, a bifunctional enzyme with organophosphate hydrolase and N-acyl homoserine lactonase activities from the hyperthermophilic archaeon Sulfolobus solfataricus, was overexpressed and purified from recombinant Pseudomonas putida KT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference for N-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lower K(m) values for these substrates. The highest specificity constant obtained was for N-3-oxo-decanoyl homoserine lactone (k(cat)/K(m) = 5.5 × 10(3) M(-1)·s(-1)), but SsoPox can also degrade N-butyryl homoserine lactone (C(4)-HSL) and N-oxo-dodecanoyl homoserine lactone (oxo-C(12)-HSL), which are important for quorum sensing in our Pseudomonas aeruginosa model system. When P. aeruginosa PAO1 cultures were grown in the presence of SsoPox-immobilized membranes, the production of C(4)-HSL- and oxo-C(12)-HSL-regulated virulence factors, elastase, protease, and pyocyanin were significantly reduced. This is the first demonstration that immobilized quorum-quenching enzymes can be used to attenuate the production of virulence factors controlled by quorum-sensing signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号