共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
It has been reported that estrogen receptor-positive MCF-7 cells express TauT, a Na+-dependent taurine transporter. However, there is a paucity of information relating to the characteristics of taurine transport
in this human breast cancer cell line. Therefore, we have examined the characteristics and regulation of taurine uptake by
MCF-7 cells. Taurine uptake by MCF-7 cells showed an absolute dependence upon extracellular Na+. Although taurine uptake was reduced in Cl- free medium a significant portion of taurine uptake persisted in the presence of NO3
-. Taurine uptake by MCF-7 cells was inhibited by extracellular β-alanine but not by L-alanine or L-leucine. 17β-estadiol increased
taurine uptake by MCF-7 cells: the Vmax of influx was increased without affecting the Km. The effect of 17β-estradiol on taurine uptake by MCF-7 cells was dependent upon the presence of extracellular Na+. In contrast, 17β-estradiol had no significant effect on the kinetic parameters of taurine uptake by estrogen receptor-negative
MDA-MB-231 cells. It appears that estrogen regulates taurine uptake by MCF-7 cells via TauT. In addition, Na+-dependent taurine uptake may not be strictly dependent upon extracellular Cl-. 相似文献
5.
Hormonal regulation of lactate dehydrogenase-A through activation of protein kinase C pathways in MCF-7 breast cancer cells 总被引:3,自引:0,他引:3
Li X Qin C Burghardt R Safe S 《Biochemical and biophysical research communications》2004,320(3):625-634
Lactate dehydrogenase A (LDH-A) is hormonally regulated in rodents, and increased expression of LDH-A is observed during mammary gland tumorigenesis. The mechanisms of hormonal regulation of LDH-A were investigated using a series of deletion and mutant constructs derived from the rat LDH-A gene promoter. Results of these studies show that constructs containing the -92 to -37 region of the LDH-A promoter are important for basal and E2-induced transactivation, and mutation of the consensus CRE motif within this region results in significant loss of basal activity and hormone-responsiveness. Gel mobility shift assays using nuclear extracts from MCF-7 cells show that both CREB and ATF-1 interact with the CRE. Studies with kinase inhibitors show that E2-induced activation of this CRE is dependent on protein kinase C, and these data indicate that LDH-A is induced through a non-genomic pathway of estrogen action. 相似文献
6.
Shear stress-induced c-fos activation is mediated by Rho in a calcium-dependent manner 总被引:3,自引:0,他引:3
Shiu YT Li S Yuan S Wang Y Nguyen P Chien S 《Biochemical and biophysical research communications》2003,303(2):548-555
We aimed at elucidating the molecular basis of c-fos promoter activation in vascular endothelial cells (ECs) in response to shear stress, with emphases on Rho family GTPases (Rho, Cdc42, and Rac) and intracellular calcium. Dominant-negative and constitutively activated mutants of these GTPases were used to block the action of upstream signals and to activate the downstream pathways, respectively. The role of intracellular calcium was assessed with intracellular calcium chelators. Only Rho, but not Cdc42 or Rac, is involved in the shear stress induction of c-fos. This Rho-mediated shear-induction of c-fos is dependent on intracellular calcium, but not on the Rho effector p160ROCK or actin filaments. While the inhibition of p160ROCK and its ensuing disruption of actin filaments decreased the basal c-fos activity in static ECs (no flow), it did not affect the shear-inductive effect. The calcium chelator BAPTA-AM inhibits the shear-induction, as well as the static level, of c-fos activity. 相似文献
7.
8.
9.
《Autophagy》2013,9(2):196-207
Ursolic acid (UA) is a pentacyclic triterpenoid with promising cancer chemopreventive properties. A better understanding of the mechanisms underlying anticancer activity of UA is needed for further development as a clinically useful chemopreventive agent. Here, we found that both endoplasmic reticulum (ER) stress and autophagy were induced by UA in MCF-7 human breast cancer cells. Surprisingly, ER stress was identified as an effect rather than a cause of UA-induced autophagy. Autophagy-dependent ER stress protected the cells from UA-induced apoptosis through EIF2AK3-mediated upregulation of MCL1. Activation of MAPK1/3 but not inhibition of MTOR pathway contributed to UA-induced cytoprotective autophagy in MCF-7 cells. Our findings uncovered a novel cellular mechanism involved in the anticancer activity of UA, and also provided a useful model to study biological significance and mechanisms of autophagy-mediated ER stress. 相似文献
10.
11.
12.
13.
The principal secreted estrogen, 17beta-estradiol rapidly activates signaling cascades that regulate important physiological processes including ion transport across membranes, cytosolic pH and cell proliferation. These effects have been extensively studied in the MCF-7 estrogen-responsive human breast carcinoma cell line. Here, we demonstrate that a physiological concentration of 17beta-estradiol caused a rapid, synchronous and transient increase in intracellular calcium concentration in a confluent monolayer of MCF-7 cells 2-3 min after treatment. This response was abolished when cells were pre-incubated with the phospholipase A(2) (PLA(2)) inhibitor quinacrine or with the cyclooxygenase inhibitor indomethacin. The translocation of GFP-cPLA(2)alpha to perinuclear membranes occurred 1-2 min after 17beta-estradiol treatment; this translocation was concurrent with the transient phosphorylation of cPLA(2)alpha at serine residue 505. The phosphorylation and translocation of cPLA(2) were sensitive to inhibition of the extracellular signal regulated kinase (ERK) signaling cascade and occurred simultaneously with a transient activation of ERK. The phosphorylation of cPLA(2) could be stimulated by membrane impermeable 17beta-estradiol conjugated to bovine serum albumen and was blocked by an antagonist of the classical estrogen receptor. Here we show, for the first time, that PLA(2) and the eicosanoid biosynthetic pathway are involved in the 17beta-estradiol induced rapid calcium responses of breast cancer cells. 相似文献
14.
Han-Young KimTae Won Choi Hyun Jung KimSung-Moo Kim Kyung-Ran ParkHyeung-Jin Jang Eun Ha LeeChul Young Kim Sang Hoon JungBum Sang Shim Kwang Seok Ahn 《Phytomedicine》2011,18(7):567-574
The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D1), anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells. 相似文献
15.
Estrogen, which has been strongly implicated in breast cancer, suppresses apoptosis in estrogen receptor (ER) positive MCF-7 breast cancer cells. Phospholipase D (PLD), which is commonly elevated in ER negative breast cancer cells, also suppresses apoptosis. Survival signals generated by both estrogen and PLD are dependent upon elevated Myc expression. We report here that estrogen- and PLD-induced increases in Myc expression are due to reduced turnover of Myc protein. Estrogen and PLD suppressed phosphorylation of Myc at Thr58 - a site that targets Myc for degradation by the proteasome. The data provide a mechanism for elevated Myc expression in hormone-dependent and hormone-independent breast cancer. 相似文献
16.
Fujisaki K Tanabe N Suzuki N Kawato T Takeichi O Tsuzukibashi O Makimura M Ito K Maeno M 《Life sciences》2007,80(14):1311-1318
17.
Zhang M Wang Q Yuan W Yang S Wang X Yan JD Du J Yin J Gao SY Sun BC Zhu TH 《The Journal of steroid biochemistry and molecular biology》2007,105(1-5):91-97
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER−) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER− cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer. 相似文献
18.
19.
HER3, a member of the receptor tyrosine kinase super family, is overexpressed in a number of cancers, and is associated with malignant phenotypes. Control of the protein stability of the membrane, as well as nuclear receptors, has been known to be an important process affecting tumor cells; however, their relationships have yet to be elucidated. In this study, we demonstrate that estradiol promotes rapid degradation of HER3 via the proteasome pathway in ER-positive breast cancer, MCF-7. ER prevented HER3 degradation, and knockdown of ER expression by si-RNA promoted rapid degradation of HER3. Breakdown of HER3 and ER were regulated by a ubiquitin ligase Nedd4-1 in the presence of estradiol stimulation. We speculate that estradiol quickly degrades ER, making HER3 accessible by Nedd4-1, and leads to the rapid degradation of HER3. In addition, knockdown of ubiquitin ligase Nedd4-1 enhances estradiol induced cell proliferation. These results indicate that HER3 and Nedd4-1 in ER-positive breast cancers might be an important therapeutic target. 相似文献
20.
H. Rex Gaskins Jong-Won Kim Gary J. Hausman 《In vitro cellular & developmental biology. Plant》1990,26(11):1049-1056
Summary To better understand possible autocrine or paracrine mechanisms involved in adipose tissue development, we have studied the
biosynthesis of insulinlike growth factor I (IGF-I) and prostaglandin E2 (PGE2) by cultured porcine preadipocytes in response to factors known to modulate cell growth and differentiation. The expression
of c-fos was also monitored because of the potential role of that proto-oncogene in coordination of growth and differentiation. Preadipocytes
were grown to confluence and then maintained in one of three media treatments: a) standard medium supplemented with 10% fetal
bovine serum (FBS), b) FBS supplemented with dexamethasone (Dex), c) FBS supplemented with dibutryladenosine 3′–5′-cyclic
monophosphate. Indirect measurements of growth indicated that cell proliferation did not differ due to media type. Histochemical
and enzymatic measurements of adipocyte development revealed that differentiation occurred only in those cultures exposed
to Dex. The increase in adipocyte differentiation in response to Dex was associated with a decrease in c-fos and actin RNA expression whereas the decrease in c-fos RNA expression in response to Dex was small (approximately 40%); immunocytochemical analysis indicated that induction of
Fos protein occurred only in undifferentiated cells. Thus, the cells responsible for the decrease in c-fos RNA expression are possibly those signaled to differentiate into adipocytes. Expression of IGF-I RNA and secretion of IGF-I
and PGE2 were also decreased in response to Dex treatment. These data provide the first demonstration that biosynthesis of IGF-I by
preadipocytes can be modulated by a potent inducer of adipocyte differentiation. The combined results indicate that glucocorticoids
may stimulate adipocyte differentiation by suppressing intracellular and putative intercellular mitogenic signals.
This work was supported in part by grant HD 18447 from the National Institutes of Health, Bethesda, MD (G. J. H.).
Mention of a trade mark, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U.
S. Department of Agriculture or University of Georgia and does not imply its approval to the exclusion of other products that
may be suitable. 相似文献