首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Successful sequencing of the human genome has opened a new era in the life sciences and has greatly accelerated biomedical research. Among various research endeavors benefiting from established genomic information, one of the most fruitful areas is the research on orphan G protein-coupled receptors (GPCRs). Many intercellular mediators, including peptides, lipids, and other small molecules, have found their GPCRs in the plasma membrane, e.g., relaxin and tyramine. In the past 14 months, more than one dozen papers have been published reporting the finding of intercellular lipid mediators acting on rhodopsin family GPCRs. This review focuses primarily on intercellular lipid mediators and their recently discovered GPCRs.  相似文献   

2.
Originally regarded as just membrane constituents and energy storing molecules, lipids are now recognised as potent signalling molecules that regulate a multitude of cellular responses via receptor-mediated pathways, including cell growth and death, and inflammation/infection. Derived from polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), each lipid displays unique properties, thus making their role in inflammation distinct from that of other lipids derived from the same PUFA. The diversity of their actions arises because such metabolites are synthesised via discrete enzymatic pathways and because they elicit their response via different receptors. This review will collate the bioactive lipid research to date and summarise the findings in terms of the major pathways involved in their biosynthesis and their role in inflammation and its resolution. It will include lipids derived from AA (prostanoids, leukotrienes, 5-oxo-6,8,11,14-eicosatetraenoic acid, lipoxins and epoxyeicosatrienoic acids), EPA (E-series resolvins), and DHA (D-series resolvins, protectins and maresins).  相似文献   

3.
4.
Ethanol (EtOH) is the most widely abused substance in the United States, and it contributes to well-documented harmful (at high dosages) and beneficial (at low dosages) changes in inflammatory and immune responses. Lipid rafts have been implicated in the regulation and activation of several important receptor complexes in the immune system, including the TLR4 complex. Many questions remain about the precise mechanisms by which rafts regulate the assembly of these receptor complexes. Results summarized in this review indicate that EtOH acts by altering the LPS-induced redistribution of components of the TLR4 complex within the lipid raft and that this is related to changes in actin cytoskeleton rearrangement, receptor clustering, and subsequent signaling. EtOH provides an example of an immunomodulatory drug that acts at least in part by modifying lipid rafts, and it could represent a model to probe the relationships between rafts, receptor complexes, and signaling.  相似文献   

5.
6.
Active resolution of acute inflammation is a previously unrecognized interface between innate and adaptive immunity. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programmes that enable inflamed tissues to return to homeostasis. This Review presents new cellular and molecular mechanisms for the resolution of inflammation, revealing key roles for eicosanoids, such as lipoxins, and recently discovered families of endogenous chemical mediators, termed resolvins and protectins. These mediators have anti-inflammatory and pro-resolution properties, thereby protecting organs from collateral damage, stimulating the clearance of inflammatory debris and promoting mucosal antimicrobial defence.  相似文献   

7.
8.
An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., dietary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms underlying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs), that not only constitute their backbone but also provide the membrane with a suitable environment, fluidity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobiology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegenerative processes, represent an essential step to delay the onset of AD and its progression. Also, in this way it may be possible to suggest new preventive or therapeutic options that can beneficially modify the course of this devastating disease.  相似文献   

9.
10.
Recruitment of T cells to the airways is crucial in the pathogenesis of asthma, and it is thought to be mediated mainly by peptide chemokines. By contrast, lipid mediators such as leukotrienes and prostaglandins have classically been thought to contribute to asthma pathogenesis by other mechanisms. However, as we discuss here, the recent molecular identification of leukotriene and prostaglandin receptors, as well as the generation of mice that are genetically deficient in them, has revealed that two of these lipids - leukotriene B(4) and prostaglandin D(2) - also direct T-cell migration and seem to cooperate with chemokines in a non-redundant, sequential manner to recruit T cells to the airways in asthma.  相似文献   

11.
12.
Neuroprostanes are lipid mediators produced by nonenzymatic free radical peroxidation of docosahexaenoic acid (DHA). DHA is associated with a lower atherosclerosis risk, suggesting a beneficial role in cardiovascular diseases. The aim of this study was to investigate the influence of DHA peroxidation on its potentially antiarrhythmic properties (AAP) in isolated ventricular cardiomyocytes and in vivo in post-myocardial infarcted mice. Calcium imaging and biochemical experiments indicate that cardiac arrhythmias induced by isoproterenol are associated with Ca2+ leak from the sarcoplasmic reticulum after oxidation and phosphorylation of the type 2 ryanodine receptor (RyR2) leading to dissociation of the FKBP12.6/RyR2 complex. Both oxidized DHA and 4(RS)-4-F4t-NeuroP prevented cellular arrhythmias and posttranslational modifications of the RyR2 leading to a stabilized FKBP12.6/RyR2 complex. DHA per se did not have AAP. The AAP of 4(RS)-4-F4t-NeuroP was also observed in vivo. In this study, we challenged the paradigm that spontaneously formed oxygenated metabolites of lipids are undesirable as they are unconditionally toxic. This study reveals that the lipid mediator 4(RS)-4-F4t-neuroprostane derived from nonenzymatic peroxidation of docosahexaenoic acid can counteract such deleterious effects through cardiac antiarrhythmic properties. Our findings demonstrate 4(RS)-4-F4t-NeuroP as a mediator of the cardioprotective AAP of DHA. This discovery opens new perspectives for products of nonenzymatic oxidized ω3 polyunsaturated fatty acids as potent mediators in diseases that involve ryanodine complex destabilization such as ischemic events.  相似文献   

13.
Lipid rafts are functional microdomains enriched with sphingolipids and cholesterol. The fatty acyl chain composition of sphingolipids is a critical factor in the localization of lipids in lipid rafts. The recent studies suggest that lipid rafts are more heterogeneous than previously thought. In addition, our discovery of a new glycolipid, phosphatidylglucoside (PtdGlc), also supports the notion of raft heterogeneity. The complete structural characterization of PtdGlc shows that it consists solely of saturated fatty acyl chains: C18:0 at the sn-1 and C20:0 at the sn-2 positions of the glycerol backbone. This unique fatty acyl composition comprising a single molecular species rarely occurs in known mammalian lipids. Although the structure of PtdGlc is similar to that of phosphatidylinositol, PtdGlc localizes to the outer leaflet of the plasma membrane and is possibly involved in cell-cell interaction signaling in the central nervous system.  相似文献   

14.
Several components of membrane rafts play a critical role in cytokinesis. A recent paper reports a new lipid component of these rafts required for proper cell division.  相似文献   

15.
A new genus of specialized pro-resolving mediators (SPM) which include several families of distinct local mediators (lipoxins, resolvins, protectins, and maresins) are actively involved in the clearance and regulation of inflammatory exudates to permit restoration of tissue homeostasis. Classic lipid mediators that are temporally regulated are formed from arachidonic acid, and novel local mediators were uncovered that are biosynthesized from ω-3 poly-unsaturated fatty acids, such as eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid. The biosynthetic pathways for resolvins are constituted by fatty acid lipoxygenases and cyclooxygenase-2 via transcellular interactions established by innate immune effector cells which migrate from the vasculature to inflamed tissue sites. SPM provide local control over the execution of an inflammatory response towards resolution, and include recently recognized actions of SPM such as tissue protection and host defense. The structural families of the SPM do not resemble classic eicosanoids (PG or LT) and are novel structures that function uniquely via pro-resolving cellular and molecular targets. The extravasation of inflammatory cells expressing SPM biosynthetic routes are matched by the temporal provision of essential fatty acids from circulation needed as substrate for the formation of SPM. The present review provides an update and overview of the biosynthetic pathways and actions of SPM, and examines resolution as an integrated component of the inflammatory response and its return to homeostasis via biochemically active resolution mechanisms.  相似文献   

16.
Systems which carry out peroxyl-dependent oxidations can serve as activation systems for carcinogenic compounds. Some function via classical peroxidase reactions in which an enzyme-derived oxidant performs the electron abstraction from or oxygen donation to the oxidizable substrate. This mechanism applies to the peroxidative activation of aromatic amines and of the phenolic compound diethylstilbestrol. These classical peroxidase reactions may be initiated by hydrogen peroxide or by organic peroxides, including lipid hydroperoxides. A different mechanism is involved in the oxygenation of polycyclic aromatic hydrocarbons and of aflatoxin B1. In these cases the oxidant is a peroxyl radical, and the reaction occurs by the direct, non-enzymatic interaction of the peroxyl radical and the oxidizable substrate. Most peroxyl radicals in biological systems are lipid-derived. The key reaction which distinguishes the peroxyl radical-dependent oxidations from the classical peroxidase reactions is the ability of the former to epoxidize activated carbon-carbon double bonds. The epoxidation of benzo[a]pyrene derivatives has been studied extensively in subcellular and whole cell and tissue systems, and is discussed as a model for this class of reaction. Determining the generality of this activation path and its role in vivo present the major questions to be answered in regard to the importance of these reactions in chemical carcinogenesis.  相似文献   

17.
18.
19.
Hydroperoxide isomerase: a new enzyme of lipid metabolism   总被引:16,自引:7,他引:9       下载免费PDF全文
An enzyme has been isolated from flaxseed (Linum usitatissimum) which utilizes the product of lipoxidase for its substrate. The enzyme, termed hydroperoxide isomerase, converts the conjugated diene hydroperoxide of linoleic acid to the corresponding monoenoic ketohydroxy fatty acid. The structure of the latter has been determined by ultraviolet, infrared, and nuclear magnetic resonance spectroscopy; periodate and permangate oxidation; gas chromatography; and thin layer chromatography. Hydroperoxide isomerase activity has also been demonstrated in crude extracts from barley (Hordeum vulgare), wheat germ (Triticum aestivum), mung beans (Phaseolus aureus), and corn (Zea mays) and from partially purified extracts of soybean (Glycine max).  相似文献   

20.
The object of this study was to establish whether different pro- and anti-inflammatory mediators were formed in colonic tissue from experimental colitis depending on the course of the disease. Concentrations of mediators of inflammation were examined in colonic tissue in dextran induced colitis in mice. Initial inflammation was produced by 5 days treatment of 10% dextran sodium sulfate (DSS) in drinking water, followed by a further 9 day period of 2% DSS in an attempt to produce a milder chronic inflammation. The degree of inflammation was scored by a standardized macroscopic and histological examination. Initially, a 60% maximum inflammation score was observed at day 4. At this time inflammation was associated with the release of interleukin-lbeta (IL-1beta) and tumour necrosis factor-alpha (TNFalpha), whereas both prostaglandins 6kPGF(1alpha) and PGE(2) and nitric oxide (NO) markedly decreased. Then a 25% inflammation score was reached which coincided with an increased production of platelet-activating factor (PAF). No significant changes were observed in leukotriene B(4) and C(4) formation. In conclusion, pro-inflammatory cytokines IL-1beta and TNFalpha are considered to be primary mediators, whereas PAF, eicosanoids and NO may reflect secondary mediators in experimental colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号