首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulates the proliferation of normal human melanocytes, whereas it inhibits the growth of human melanoma cell lines. The expression of protein kinase C (PKC) subspecies, the major intracellular receptors for TPA, was examined in normal melanocytes and the four melanoma cell lines HM3KO, MeWo, HMV-1, and G361. PKC was partially purified and then separated into subspecies by column chromatography on Mono Q and hydroxyapatite successively, and finally subjected to immunoblot analysis using antibodies specific for the PKC subspecies. Of the PKC subspecies examined, δ-, ϵ-, and ζ-PKC were detected in both normal melanocytes and the four melanoma cell lines. In contrast, both α-PKC and β-PKC were expressed in normal melanocytes, whereas either α-PKC or β-PKC was detected in melanoma cells. Specifically, HM3KO, MeWo, and HMV-1 cells were shown to contain α-PKC but not β-PKC, while G361 cells expressed β-PKC but not α-PKC. The growth of these melanoma cells was suppressed by TPA treatment, and the growth of the G361 cells lacking α-PKC was inhibited more efficiently than the other melanoma cell lines which lacked β-PKC. It was further shown that β-PKC was not detected in freshly isolated human primary or metastatic melanoma tissues. These results suggest that the expression of α-PKC or β-PKC may be altered during the malignant transformation of normal melanocytes and that loss of α-PKC or β-PKC may be related to the inhibitory effect of TPA on the growth of melanoma cells. © 1996 Wiley-Liss, Inc.  相似文献   

2.
We recently developed rat fibroblast cell lines that stably overproduce high levels of the beta 1 form of protein kinase C (PKC). These cells display several disorders in growth control and form small microscopic colonies in agar. In the present study we demonstrate that one of these cell lines, R6-PKC3, is extremely susceptible to transformation by an activated human bladder cancer c-H-ras oncogene (T24). Compared with control cell line R6-C1, T24-transfected R6-PKC3 cells yielded a 10-fold increase in the formation of large colonies in agar. Cell lines established from these colonies displayed a highly transformed morphology, expressed the T24-encoded p21 ras protein, continued to express high levels of PKC, and were highly tumorigenic in nude mice. These results provide genetic evidence that PKC mediates some of the effects of the c-H-ras oncogene on cell transformation. Data are also presented suggesting that optimum synergistic effects between c-H-ras and PKC require critical levels of their respective activities. These findings may be relevant to the process of multistage carcinogenesis in tissues containing cells with an activated c-H-ras oncogene.  相似文献   

3.
4.
We have shown previously that the stable overproduction of protein kinase C beta I (cPKC beta I) in rat 6 (R6) embryo fibroblasts results in multiple cellular growth abnormalities. To characterize the pathways through which cPKC beta I acts to exert its effects, we have undertaken a biochemical analysis of the cell line R6-PKC3. The subcellular distribution of cPKC beta I in unstimulated R6-PKC3 cells was approximately 80% cytosolic and approximately 20% membrane bound, and treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in translocation and down-regulation of an appreciable fraction of the cPKC beta I enzyme. However, long term TPA treatment was not sufficient to down-regulate all of the overproduced enzyme from both the cytosolic and membrane fractions. Two-dimensional gel analysis of 32P-labeled cellular phosphoproteins from either untreated or TPA-treated cultures revealed only minor qualitative differences between R6-PKC3 cells and a vector control cell line, R6-C1. On the other hand, several quantitative differences in the level of phosphorylation of discrete protein spots were seen. The most prominent phosphoprotein was a previously described 80/87-kDa protein designated MARCKS (myristoylated alanine-rich C kinase substrate). Compared with R6-C1 cells, R6-PKC3 cells exhibited a 2-3-fold increase in the basal level of phosphorylation of MARCKS and after treatment with TPA, displayed a dramatic prolongation in phosphorylation of this protein. Additionally, treatment of R6-PKC3 cells with TPA led to a prolonged increase in both the cytosolic and total cellular level of the MARCKS protein and a pronounced decrease in the level of MARCKS mRNA. Taken together, these results indicate that overproduction of cPKC beta I markedly alters several parameters of the MARCKS protein which may be responsible, at least in part, for the altered phenotype of these cells.  相似文献   

5.
6.
In previous studies (Housey et al.: Cell 52:343-354, 1988), our laboratory demonstrated that a cell line R6-PKC3 that stably overproduces high levels of the beta 1 isoform of PKC displayed several abnormalities in growth control, and these phenotypic changes were also markedly enhanced when the cells were exposed to TPA. The present studies indicate that these cells also display marked changes in their response to certain growth factors. A striking finding was that several agents when tested alone in serum-free medium, including EGF, PDGF, TPA, teleocidin, and OAG, stimulated DNA synthesis in quiescent R6-PKC3 cells but had a negligible effect in quiescent R6-C1 cells, a vector control cell line with normal levels of PKC. R6-PKC3 cells also show an exaggerated response to very low concentrations of serum, when compared to R6-C1 control cells. These studies provide direct genetic evidence that alterations in cellular levels of PKC can markedly influence the responses of cells to specific growth factors.  相似文献   

7.
8.
H Paterson  B Reeves  R Brown  A Hall  M Furth  J Bos  P Jones  C Marshall 《Cell》1987,51(5):803-812
To investigate whether the activated N-ras oncogene of HT1080 human fibrosarcoma cells contributes to the expression of the transformed phenotype, we have isolated flat revertants. In two independent revertant lines, an increase in chromosomal ploidy occurred without a concomitant increase in the number of copies of the N-ras transforming allele. Immunoprecipitation confirms that the level of the mutant N-ras p21 gene product in the revertants is correspondingly lower than in HT1080. Analysis of sporadic tumors derived from the revertant cells reveals an increased dosage of the transforming allele. The revertants also retransform after transfection of cloned activated ras oncogenes. These results imply direct participation of an N-ras oncogene in maintaining the transformed phenotype of a human tumor cell line.  相似文献   

9.
H Zarbl  J Latreille  P Jolicoeur 《Cell》1987,51(3):357-369
Morphologic revertants of FBJ murine sarcoma virus (v-fos)-transformed rat-1 fibroblasts were isolated using a novel selection procedure based on prolonged retention of rhodamine 123 within mitochondria of v-fos-transformed versus normal fibroblasts. Two classes of revertants were isolated: class I revertants have sustained mutations in cellular genes, and a class II revertant has a nonfunctional v-fos provirus. Somatic-cell hybridization studies suggested that the revertant phenotype was recessive to the transformed phenotype. Class I revertants were also resistant to retransformation by v-gag-fos-fox, v-Ha-ras, v-abl, and v-mos, but could be retransformed by the trk oncogene and polyoma virus middle T antigen. These results suggest that the class I revertants sustained mutations in one or more cellular genes essential for transformation by some, but not all, oncogenes. Our data suggest the existence of common biochemical pathways for transformation.  相似文献   

10.
Insulin-like growth factor 1 receptor (IGF-1R) is important for transformation of cells with cellular and viral oncogenes. This knowledge is mainly based on experiments on IGF-1R knockout mouse fibroblasts, which mostly are unable to transform after introduction of various oncogenes. Recently, we observed two variants of R- cells, one of which (R-s) surprisingly expresses the β-subunit of IGF-1R whereas the other one (R-r) does not. Here we show that the β-subunit is localized intracellularly and forms perinuclear aggregates. It expresses tyrosine kinase activity and appears to be crucial for cell survival since knockdown of it kills the R-s cells. H-RasV12 and/or polyoma middle T-antigen fail to transform R-r, whereas R- cells expressing the β-subunit were transformed as assessed by formation of colonies in soft agar. The oncogenic transformation of R-s cells was, however, abrogated when the aberrant β-subunit was knockdown by siRNA. The occurrence of intracellular IGF-1R, especially in tumor cells, has been widely reported but its function has not been understood. Our study provides evidence that it may be important for cell survival and transformation.  相似文献   

11.
We have reported earlier the isolation of two recessive, serum- and anchorage-dependent revertants (R116 and R260) from a c-H-ras oncogene-transformed NIH 3T3 line. In both revertants, the oncogene was fully expressed and fusion of either revertant with (untransformed) NIH 3T3 cells, or of the two revertants with one another, resulted in transformed progeny. These, and other data, indicated that the transforming activity of the oncogene was impaired in the two revertants in consequence of defects in distinct genes needed to mediate this activity. We report here that neither revertant could be re-transformed by the K-ras or N-ras oncogene (though they could be re-transformed by several other oncogenes). The two revertants turned out to be tumorigenic in nude mice (though less so than the parental transformed cells). The tumor cells, as recovered, formed foci and had a transformed morphology and a greatly diminished serum and anchorage dependence. Growth of the cells in culture (for 20 passages) resulted in their regaining the characteristics (i.e., anchorage and serum dependence) of cultured R116 and R260 cells. Proliferation of the cells in nude mice was not accompanied by a change in the level of ras oncogene expression or in gene amplification, at least as manifested in the lack of appearance of double-minute chromosomes. The addition of the growth factors TGF alpha and beta to the medium of either revertant did not support anchorage-independent growth.  相似文献   

12.
Early-passage rat kidney cells were immortalized or rescued from senescence with three different oncogenes: viral promoter-driven c-myc, H-ras (Val-12), and adenovirus type 5 E1a. The normal c-myc and H-ras (Gly-12) were unable to immortalize cells under similar conditions. Quantitation of RNA in the ras-immortalized lines demonstrated that the H-ras oncogene was expressed at a level equivalent to that of the normal H-ras gene in established human or rat cell lines. Cell lines immortalized by different oncogenes were found to have distinct growth responses to individual growth factors in a short-term assay. E1a-immortalized cells were largely independent of serum growth factors, whereas c-myc-immortalized cells responded to serum better than to epidermal growth factor and insulin. H-ras-immortalized cells responded significantly to insulin alone and gave a maximal response to epidermal growth factor and insulin. Several cellular genes associated with platelet-derived growth factor stimulation, including c-myc, were expressed at high levels in the H-ras-immortalized cells, and c-myc expression was deregulated, suggesting that the H-ras oncogene has provided a "competence" function. H-ras-immortalized cells could not be morphologically transformed by secondary transfection with a long terminal repeat-c-myc oncogene, but secondary transfection of the same cells with H-ras (Val-12) produced morphologically transformed colonies that had 20- to 40-fold higher levels of H-ras oncogene expression. Thus, transformation in this system is dependent on high levels of H-ras oncogene expression rather than on the presence of activated H-ras and c-myc oncogenes in the same cell.  相似文献   

13.
Site-directed mutagenesis of the conserved sequence motifs of p21 generated a group of mutant p21s defective in GTP binding. Some of these mutants were highly transforming, whereas others were transformation defective. Among the latter group, we found two mutants, derived from the v-H-ras oncogene by substituting the asparagine-116 with tyrosine and isoleucine, that exhibited a trans-dominant activity of suppressing the transformed phenotype of NIH3T3 cells induced by a long terminal repeat-linked c-H-ras and a wild-type v-H-ras. They caused reduction of the colony-forming efficiency in soft agar (78% in c-ras-transformed cells; 55% in v-ras cells) and morphological reversion of ras transformants. Subclones of revertants expressed a great excess of mutant p21 relative to the c-ras p21 present in these cells. These mutants were not lethal to NIH3T3 cells. Apparently, defective proteins encoded by suppressor mutants sequestered vital targets for ras function. Suppressor mutants also induced morphological reversion of NIH3T3 cells transformed by src, fes/flp, sis, and fms oncogenes, suggesting that these oncogenes function upstream to ras in the signaling pathways. Cells transformed by mos and a chemical carcinogen were unaffected.  相似文献   

14.
To examine whether protein kinase C (PKC) plays a role in mediating growth inhibitory effects of hexamethylene bisacetamide (HMBA) we compared a control H29 colon cancer cell line to a derivative, HT29-PKC7, that overexpresses high levels of PKC beta 1. We found that although HMBA markedly inhibited the growth of the control cells, no inhibition was seen with the HT29-PKC7 cells. On the other hand the tumor promoter 12-0-tetradecanoyl-phorbol-13 acetate inhibited the growth of HT29-PKC7 cells, but no inhibition was seen with the control cells. Maximum inhibition of the growth of both cell lines was obtained by combined treatment with HMBA and TPA. These results may be relevant to the use of HMBA in combination with other agents in the therapy of specific cancers.  相似文献   

15.
The human osteosarcoma cell line Te85 clone F-5 is not tumorigenic in vivo. Its transformation with Kirsten murine sarcoma virus (KiMSV) (KHOS) confers full malignant properties and stable non-tumorigenic revertants of this KHOS cell line have been obtained. Here we show that integration and expression of a single copy of the KiMSV proviral DNA, which is totally lost in the HOS 240S revertant, is responsible for the acquisition of tumorigenicity. Cytogenetic analysis and the absence of a residual LTR copy in the revertant cellular genome suggest that the loss of KiMSV provirus is caused either by chromosomal segregation or by recombination not involving the LTR. In addition analysis of the expression of ras proteins revealed no changes in the pattern of c-ras products and the expression of v-ras only in the KHOS cells. All these data suggest that Te85 and HOS 240S cell lines could represent a human alternative recipient system to rodent cells in studies with oncogenes.  相似文献   

16.
17.
We have investigated the effect of transfection with the oncogenes c-myc and H-ras on cellular radiosensitivity. We obtained a mink lung epithelial line, Mv1Lu (ATCC CCL-64), and two sublines which had been transformed by transfection with c-myc and mutated (T24) H-ras 1. The cell survival parameters do not differ significantly between the three lines. These parameters were, for the parent line: D0 = 1.95 Gy, n = 2.0; for the c-myc transfected line: D0 = 2.10 Gy, n = 2.33; and for the H-ras transfected line: D0 = 2.40 Gy, n = 1.77. Although the terminal slope of the survival curve of the cells of the parent line is slightly steeper than that for the cells of either of the transfected lines, the differences are not significant. Nor is there any difference between the cell lines at the clinically relevant dose of 2 Gy. We conclude that neither activated H-ras nor c-myc oncogenes alter the radiosensitivity of the Mv1Lu line.  相似文献   

18.
Signaling through the insulin-like growth factor I receptor (IGF-IR) axis is essential for transformation by many dominantly acting oncoproteins. However, the mechanism by which IGF-IR contributes to oncogenesis remains unknown. To examine this, we compared transformation properties of the oncogenic ETV6-NTRK3 (EN) chimeric tyrosine kinase in IGF-IR-null R- mouse embryo fibroblasts with R- cells engineered to reexpress IGF-IR (R+ cells). We previously showed that R- cells expressing EN (R- EN cells) are resistant to transformation but that transformation is restored in R+ cells. We now show that while R- EN cells have intact Ras-extracellular signal-regulated kinase signaling and cell cycle progression, they are defective in phosphatidylinositol-3-kinase (PI3K)-Akt activation and undergo detachment-induced apoptosis (anoikis) under anchorage-independent conditions. In contrast, R+ cells expressing EN (R+ EN cells) suppress anoikis and are fully transformed. The requirement for IGF-IR in R- EN cells is overcome by ectopic expression of either activated Akt or a membrane-targeted form of EN. Moreover, compared to R- EN cells, R+ EN cells show a dramatic increase in membrane localization of insulin receptor substrate 1 (IRS-1) in association with EN. Since EN is known to bind IRS-1 as an adaptor protein, our findings suggest that IGF-IR may function to localize EN/IRS-1 complexes to cell membranes, in turn facilitating PI3K-Akt activation and suppression of anoikis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号