首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Electronic and vibrational optical activity of the set of neurohypophyseal hormones and their analogs was investigated to clarify the S-S bond solution conformation. The selected compounds include oxytocin (I), lysine vasopressin (II), arginine vasopressin (III), and their analogs (IV-IX), differing widely in their pharmacological properties. We have extended the already known electronic circular dichroism data by new information provided by vibrational circular dichroism (VCD) and Raman optical activity (ROA). The use of VCD brought additional details on three-dimensional structure of the chain reversal in the ring moiety and on its left handedness. Furthermore, Raman scattering and ROA allowed us to deduce the sense of the disulfide bond torsion.  相似文献   

2.
The binding modes of the [Ru(II)(1,10-phenanthroline)(L1L2) dipyrido[3,2-a:2′,3′-c]phenazine]2+ {[Ru(phen)(py) Cl dppz]+ (L1 = Cl, L2 = pyridine) and ([Ru(phen)(py)2dppz]2+ (L1 = L2 = pyridine)} to native DNA is compared to that of the [Ru(II)(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]2+ complex ([Ru(phen)2dppz]2+) by various spectroscopic and hydrodynamic methods including electric absorption, linear dichroism (LD), fluorescence spectroscopy, and viscometric titration. All measured properties, including red-shift and hypochromism in the dppz absorption band, nearly perpendicular molecular plane of the dppz ligand with respect to the local DNA helix axis, prohibition of the ethidium binding, the light switch effect and binding stoichiometry, increase in the viscosity upon binding to DNA, increase in the melting temperature are in agreement with classical intercalation of dppz ligand of the [Ru(phen)2dppz]2+ complex, in which both phenanthroline ligand anchored to the DNA phosphate groups by electrostatic interaction. [Ru(phen)(py)2 dppz]2+ and [Ru(phen)(py) Cl dppz]+ complexes had one of the phenanthroline ligand replaced by either two pyridine ligands or one pyridine plus a chlorine ion. They exhibited similar protection from water molecules, interaction with DNA bases, and occupying site that is common with ethidium. The dppz ligand of these two Ru(II) complex were greatly tilted relative to the DNA helix axis, suggesting that the dppz ligand resides inside the DNA and is not perpendicular relative to the DNA helix axis. These observation suggest that anchoring the [Ru(phen)2dppz]2+complex by both phenanthroline is essential for the dppz ligand to be classically intercalated between DNA base-pairs.  相似文献   

3.
Conformational energy computations on the 1-aminocyclopropane-1-carboxylic acid mono-, di-, and tripeptide amides, (Ac-(Ac3c)n---NHMe (n=1−3), indicate that this C,-dialkylated, cyclic -amino acid residue is conformally restricted and that type-I(I′) β-bends and distorted 310-helices are particularly stable conformations for the di- and tripeptide amides, respectively. The results of the theoretical analysis are in agreement with those obtained in an i.r. absorption and 1H n.m.r. investigation in chloroform solution of A.c.3c-rich tri- and tetrapeptide esters. A comparisons is also made with the conclusions extracted from our previous work on peptides rich in Aib (-aminoisobutyric acid), Ac5c(1-aminocyclopentane-1-carboxylic acid), and Ac6c (1-aminocyclohexane-1-carboxylic acid).  相似文献   

4.
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号