首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generally the number of muscles acting across a joint exceeds the number of degrees of freedom available to the joint. This redundancy raises a problem regarding the ratio in which these muscles are activated during a particular motor task. In this paper we present a theory to explain the activation patterns of muscles used during voluntary and reflex induced contractions. The basic assumptions underlying the theory are that 1) coordination of muscles is based on synergistic muscle activities, 2) the synergisms involved satisfy certain transformations of muscle spindle signals to muscle activation signals and 3) muscle spindle output is proportional to the ratio of muscle stretch and muscle length in lengthening muscles, and is zero in shortening muscles. The theory is used to predict the recruitment threshold of motor units in six arm muscles during voluntary isometric contractions. All theoretical predictions are in reasonable agreement with the experimentally observed behavior of a large population of motor units within each muscle. However, within a single muscle sometimes motor-unit populations have been found to have different types of recruitment behavior. This deviating behavior is discussed in the light of the theory presented here.  相似文献   

2.
The present model of joint angle perception is based on the following hypotheses: the perception and control of joint angle are closely interrelated processes; central motor commands are adequately expressed by shifts of an equilibrium point resulting from the interaction of antagonistic muscles and a load; two fundamental commands-reciprocal (r) and coactivative (c) provide for changes in activity of the antagonistic muscle pair. The dependence of joint angle on static muscle torque and r and c commands is derived (Eq. 5). The following principles of joint position sense are formulated: 1) the r component of the efferent copy plays the role of a reference point which shifts during voluntary regulation of muscle state, but remains unchanged during any passive alterations of joint position; 2) muscle afferent signals deliver not absolute but relative information (i.e. measured relatively to the central reference point). These signals turn out to be related to active muscle torque; 3) the nervous system evaluates muscle afferent signals on the basis of a scale determined by the level of coactivation of the antagonistic muscles. Kinaesthetic illusions appear to be due to disruptions in perception of afferent and/or efferent components of position sense. The present model is consistent with all the variety of kinaesthetic illusions observed experimentally. A qualitative neurophysiological schema for joint angle perception is proposed involving efferent copy and information concerning muscle torque delivered by the tendon organ, muscle spindle, and perhaps, articular receptors. It is known that the cerebellum incorporates both afferent and efferent information concerning movement. One may presume that it plays an essential role in position sense.  相似文献   

3.
Analysis of an optimal control model of multi-joint arm movements   总被引:1,自引:0,他引:1  
 In this paper, we propose a model of biological motor control for generation of goal-directed multi-joint arm movements, and study the formation of muscle control inputs and invariant kinematic features of movements. The model has a hierarchical structure that can determine the control inputs for a set of redundant muscles without any inverse computation. Calculation of motor commands is divided into two stages, each of which performs a transformation of motor commands from one coordinate system to another. At the first level, a central controller in the brain accepts instructions from higher centers, which represent the motor goal in the Cartesian space. The controller computes joint equilibrium trajectories and excitation signals according to a minimum effort criterion. At the second level, a neural network in the spinal cord translates the excitation signals and equilibrium trajectories into control commands to three pairs of antagonist muscles which are redundant for a two-joint arm. No inverse computation is required in the determination of individual muscle commands. The minimum effort controller can produce arm movements whose dynamic and kinematic features are similar to those of voluntary arm movements. For fast movements, the hand approaches a target position along a near-straight path with a smooth bell-shaped velocity. The equilibrium trajectories in X and Y show an ‘N’ shape, but the end-point equilibrium path zigzags around the hand path. Joint movements are not always smooth. Joint reversal is found in movements in some directions. The excitation signals have a triphasic (or biphasic) pulse pattern, which leads to stereotyped triphasic (or biphasic) bursts in muscle control inputs, and a dynamically modulated joint stiffness. There is a fixed sequence of muscle activation from proximal muscles to distal muscles. The order is preserved in all movements. For slow movements, it is shown that a constant joint stiffness is necessary to produce a smooth movement with a bell-shaped velocity. Scaled movements can be reproduced by varying the constraints on the maximal level of excitation signals according to the speed of movement. When the inertial parameters of the arm are altered, movement trajectories can be kept invariant by adjusting the pulse height values, showing the ability to adapt to load changes. These results agree with a wide range of experimental observations on human voluntary movements. Received: 4 December 1995 / Accepted in revised form: 17 September 1996  相似文献   

4.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

6.
PurposeThis study was designed to evaluate the effects of botulinum toxin type-A (BoNTA) injection of the rectus femoris (RF) muscle on the electromyographic activity of the knee flexor and extensor and on knee and hip kinematics during gait in patients with hemiparesis exhibiting a stiff-knee gait.MethodTwo gait analyses were performed on fourteen patients: before and four weeks after BoNTA injection. Spatiotemporal, kinematic and electromyographic parameters were quantified for the paretic limb.ResultsBoNTA treatment improved gait velocity, stride length and cadence with an increase of knee angular velocity at toe-off and maximal knee flexion in the swing phase. Amplitude and activation time of the RF and co-activation duration between the RF and biceps femoris were significantly decreased. The instantaneous mean frequency of RF was predominantly lower in the pre-swing phase.ConclusionsThe results clearly show that BoNTA modified the EMG amplitude and frequency of the injected muscle (RF) but not of the synergist and antagonist muscles. The reduction in RF activation frequency could be related to increased activity of slow fibers. The frequency analysis of EMG signals during gait appears to be a relevant method for the evaluation of the effects of BoNTA in the injected muscle.  相似文献   

7.
8.
The phylogenetic position of the Ectoprocta within the Lophotrochozoa is discussed controversially. For gaining more insight into ectoproct relationships and comparing it with other potentially related phyla, we analysed the myoanatomy and serotonergic nervous system of adult representatives of the Phylactolaemata (Plumatella emarginata, Plumatellavaihiriae, Plumatella fungosa, Fredericella sultana). The bodywall contains a mesh of circular and longitudinal muscles. On its distal end, the orifice possesses a prominent sphincter and continues into the vestibular wall, which has longitudinal and circular musculature. The tentacle sheath carries mostly longitudinal muscle fibres in Plumatella sp., whereas F. sultana also possesses regular circular muscle fibres. Three groups of muscles are associated with the lophophore: 1) Lophophoral arm muscles (missing in Fredericella), 2) epistome musculature and 3) tentacle musculature. The epistome flap is encompassed by smooth muscle fibres. A few fibres extend medially over the ganglion to its proximal floor. Abfrontal tentacle muscles have diagonally arranged muscle fibres in their proximal region, whereas the distal region is formed by a stack of muscles that resemble an inverted ‘V’. Frontal tentacle muscles show more variation and either possess one or two bases. The digestive tract possesses circular musculature which is striated except at the intestine where it is composed of smooth muscle fibres. The serotonergic nervous system is concentrated in the cerebral ganglion. From the latter a serotonergic nerve extends to each tentacle base. In Plumatella the inner row of tentacles at the lophophoral concavity lacks serotonergic nerves. Bodywall musculature is a common feature in many lophotrochozoan phyla, but among other filter feeders like the Ectoprocta is only present in the ‘lophophorate’ Phoronida. The longitudinal tentacle musculature is reminiscent of the condition found in phoronids and brachiopods, but differs to entoproct tentacles. Although this study shows some support for the ‘Lophophorata’, more comparative analyses of possibly related phyla are required. J. Morphol., 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Explosive movements such as throwing, kicking, and jumping are characterized by high velocity and short movement time. Due to the fact that latencies of neural feedback loops are long in comparison to movement times, correction of deviations cannot be achieved on the basis of neural feedback. In other words, the control signals must be largely preprogrammed. Furthermore, in many explosive movements the skeletal system is mechanically analogous to an inverted pendulum; in such a system, disturbances tend to be amplified as time proceeds. It is difficult to understand how an inverted-pendulum-like system can be controlled on the basis of some form of open loop control (albeit during a finite period of time only). To investigate if actuator properties, specifically the force-length-velocity relationship of muscle, reduce the control problem associated with explosive movement tasks such as human vertical jumping, a direct dynamics modeling and simulation approach was adopted. In order to identify the role of muscle properties, two types of open loop control signals were applied: STIM(t), representing the stimulation of muscles, and MOM(t), representing net joint moments. In case of STIM control, muscle properties influence the joint moments exerted on the skeleton; in case of MOM control, these moments are directly prescribed. By applying perturbations and comparing the deviations from a reference movement for both types of control, the reduction of the effect of disturbances due to muscle properties was calculated. It was found that the system is very sensitive to perturbations in case of MOM control; the sensitivity to perturbations is markedly less in case of STIM control. It was concluded that muscle properties constitute a peripheral feedback system that has the advantage of zero time delay. This feedback system reduces the effect of perturbations during human vertical jumping to such a degree that when perturbations are not too large, the task may be performed successfully without any adaptation of the muscle stimulation pattern.  相似文献   

10.
Background: Footwear-generated medio-lateral foot center of pressure manipulation has been shown to have potential positive effects on gait parameters of hip osteoarthritis patients, ultimately reducing maximum joint reaction forces. The objective of this study was to investigate effects of medio-lateral foot center of pressure manipulation on muscle activity of hip-spanning and back muscles during gait in bilateral hip osteoarthritis patients. Methods: Foot center of pressure was shifted along the medio-lateral foot axis using a foot-worn biomechanical device allowing controlled center of pressure manipulation. Sixteen female bilateral hip osteoarthritis patients underwent electromyography analysis while walking in the device set to three parasagittal configurations: neutral (control), medial, and lateral. Seven hip-spanning muscles (Gluteus Medius, Gluteus Maximus, Tensor Fascia Latae, Rectus Femoris, Semitendinosis, Biceps Femoris, Adductor Magnus) and one back muscle (Erector Spinae) were analyzed. Magnitude and temporal parameters were calculated. Results: The amplitude and temporal parameter varied significantly between foot center of pressure positions for 5 out of 8 muscles each for either the more or less symptomatic leg in at least one subphase of the gait cycle. Conclusion: Medio-lateral foot center of pressure manipulation significantly affects neuromuscular pattern of hip and back musculature during gait in female hip bilateral osteoarthritis patients.  相似文献   

11.
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle–tendon cell attachment. Although the muscle–tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle–tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.  相似文献   

12.
Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.  相似文献   

13.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

14.
15.
Sound production in cicadas is powered by a pair of large muscles whose contractions cause buckling of cuticular tymbals and thereby create sound pulses. Sound is modulated by control muscles that alter the stiffness of the tymbals or change the shape of the abdominal resonance chamber. Muscle ultrastructure and contractile properties were characterized for the tymbal muscle and two control muscles, the ventral longitudinal muscle and the tymbal tensor, of the periodical cicada Magicicada septendecim. The tymbal muscle is a fast muscle that is innervated by a single motoraxon. The control muscles are an order of magnitude less massive than the tymbal muscles, but their innervation patterns were considerably more complex. The tensor muscle is innervated by two axons, each of which evokes rather slow twitches, and the ventral muscle is innervated by at least six axons, some of which produce fast and the others slow contractions. Muscle contraction kinetics correlated well with ultrastructure. Fibers of the tymbal muscle and the portions of the ventral muscle thought to be fast were richly supplied with transverse tubules (T-tubules) and sarcoplasmic reticulum (SR); slow portions of the ventral muscle and the tensor muscle had relatively little SR.Abbreviations SR sarcoplasmic reticulum - TTS transverse tubular system - VLM ventral longitudinal muscle  相似文献   

16.
17.
Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats.  相似文献   

18.
19.
Developmental gene regulation in vertebrate somatic muscles involves the cooperative interaction of MEF2 (myocyte-specific enhancer-binding factor 2) and members of the b-HLH (basic helix-loop-helix) family of myogenic factors. Until recently, however, nothing was known about the factors that control the developmental regulation of muscle genes during embryogenesis in Drosophila. The Drosophila Tropomyosin I (TmI) gene contains a proximal and distal muscle enhancer within the first intron that regulates its expression in embryonic/larval and adult muscles. We have recently shown that the 355-bp proximal enhancer contains a binding site for the Drosophila homologue of vertebrate MEF2 and that MEF2 acts cooperatively with a basal level muscle activator region to direct high level muscle expression in transgenic flies. The 92-bp muscle activator region, however, does not contain any consensus E-box (CANNTG) binding site sequences for b-HLH myogenic factors, suggesting the MEF2 may interact with other factors to regulate muscle genes in Drosophila. In this study we have used mutation analysis and germ-line transformation to analyze the cis-acting elements within the muscle activator region that regulate its expression in transgenic flies. We have identified a 71-bp region that is sufficient for low basal level temporal- and muscle-specific expression in the embryo, larva, and adult. Substitution mutations within the muscle activator region have identified several cis-element regions spanning 60-bp that are required for either full or partial muscle activator function. An analysis of proteins that bind to this region by gel mobility shift assay and copper nuclease footprinting has allowed us to identify the sites in this region at which multiple proteins complex and interact. We propose that these cis-elements and the proteins that they bind regulate muscle activator function and together with MEF2 are capable of regulating high level muscle expression. Dev. Genet. 20:297–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
In amniotes, limb muscle precursors de-epithelialize from the ventral dermomyotome and individually migrate into limb buds. In catsharks, Scyliorhinus, fin muscle precursors are also derived from the ventral dermomyotome, but shortly after de-epithelialization, they reaggregate within the pectoral fin bud and differentiate into fin muscles. Delamination of muscle precursors has been suggested to be controlled by hepatocyte growth factor (HGF) and its tyrosine kinase receptor (MET) in amniotes. Here, we explore the possibility that HGF/MET signaling regulates the delamination of appendicular muscle precursors in embryos of the catshark Scyliorhinus canicula. Our analysis reveals that Hgf is expressed in pectoral fin buds, whereas c-Met expression in fin muscle precursors is rapidly downregulated. We propose that alteration of the duration of c-Met expression in appendicular muscle precursors might underlie the evolution of individually migrating muscle precursors, which leads to the emergence of complex appendicular muscular systems in amniotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号