首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
Composite interval mapping was used to identify life-span QTL in F2 progeny of three crosses between different pairs of inbred lines. Each inbred line was derived from a different outbred population that had undergone long-term selection for either long or short life span. Microsatellite loci were used as genetic markers, and confidence intervals for QTL location were estimated by bootstrapping. A minimum of 10 QTL were detected, nine of which were located on the two major autosomes. Five QTL were present in at least two crosses and five were present in both sexes. Observation of the same QTL in more than one cross was consistent with the hypothesis that genetic variation for life span is maintained by balancing selection. For all QTL except one, allelic effects were in the direction predicted on the basis of outbred source population. Alleles that conferred longer life were always at least partially dominant.  相似文献   

2.

Background

Detecting a QTL is only the first step in genetic improvement programs. When a QTL with desirable characteristics is found, e.g. in a wild or unimproved population, it may be interesting to introgress the detected QTL into the commercial population. One approach to shorten the time needed for introgression is to combine both QTL identification and introgression, into a single step. This combines the strengths of fine mapping and backcrossing and paves the way for introgression of desirable but unknown QTL into recipient animal and plant lines.

Methods

The method consisting in combining QTL mapping and gene introgression has been extended from inbred to outbred populations in which QTL allele frequencies vary both in recipient and donor lines in different scenarios and for which polygenic effects are included in order to model background genes. The effectiveness of the combined QTL detection and introgression procedure was evaluated by simulation through four backcross generations.

Results

The allele substitution effect is underestimated when the favourable QTL allele is not fixed in the donor line. This underestimation is proportional to the frequency differences of the favourable QTL allele between the lines. In most scenarios, the estimates of the QTL location are unbiased and accurate. The retained donor chromosome segment and linkage drag are similar to expected values from other published studies.

Conclusions

In general, our results show that it is possible to combine QTL detection and introgression even in outbred species. Separating QTL mapping and introgression processes is often thought to be longer and more costly. However, using a combined process saves at least one generation. With respect to the linkage drag and obligatory drag, the results of the combined detection and introgression scheme are very similar to those of traditional introgression schemes.  相似文献   

3.
Salmonella enteritidis (SE) contamination of poultry products is a major cause of foodborne disease worldwide. Caspase-1 and inhibitor of apoptosis protein-1 (IAP-1) were selected as candidate genes for chicken response to SE because their proteins play critical roles in the apoptotic pathway when intracellular bacteria interact with host cells. Prosaposin (PSAP) was selected as a positional candidate gene based on a previous quantitative trait loci (QTL) linkage study using the same population. The F1 offspring of outbred sires crossed with three diverse, highly inbred dam lines (two major histocompatibility complex-congenic Leghorn lines named G-B1 and G-B2, and one Fayoumi line) were used to define the phenotypes. The F1 birds were involved in either pathogenic SE challenge, in which spleen and cecum content bacterial load were quantified, or SE vaccination, in which plasma antibody level to SE vaccine was evaluated. A polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) assay was developed to identify single-nucleotide polymorphism (SNP) in the three genes. The F1 offspring of heterozygous sires for each gene were genotyped. The sire caspase-1 gene was significantly associated with cecum content bacterial load (P = 0.04) in the three combined dam line crosses, and with spleen bacterial load in the G-B1 cross (P=0.02). The sire caspase-1 gene was also significantly associated with antibody level to SE vaccine (P=0.03) in F1 males in the three combined dam line crosses. The sire IAP-1 gene was significantly associated with spleen bacterial load (P=0.04) in the three combined dam-line crosses, and interacted with dam-line genetics (P = 0.01) for cecum content bacterial load. The sire PSAP gene significantly interacted with sex for spleen bacterial load (P = 0.004). This study is the first to demonstrate the association of SNPs for caspase-1, IAP-1, and PSAP genes with SE vaccine and with pathogen challenge response in chickens.  相似文献   

4.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 619 F(2) animals and their parents were typed for molecular markers covering the entire porcine genome. Associations were studied between these markers and two fatness traits: intramuscular fat content and backfat thickness. Association analyses were performed using interval mapping by regression under two genetic models: (1) an outbred line-cross model where the founder lines were assumed to be fixed for different QTL alleles; and (2) a half-sib model where a unique allele substitution effect was fitted within each of the 19 half-sib families. Both approaches revealed for backfat thickness a highly significant QTL on chromosome 7 and suggestive evidence for a QTL at chromosome 2. Furthermore, suggestive QTL affecting backfat thickness were detected on chromosomes 1 and 6 under the line-cross model. For intramuscular fat content the line-cross approach showed suggestive evidence for QTL on chromosomes 2, 4, and 6, whereas the half-sib analysis showed suggestive linkage for chromosomes 4 and 7. The nature of the QTL effects and assumptions underlying both models could explain discrepancies between the findings under the two models. It is concluded that both approaches can complement each other in the analysis of data from outbred line crosses.  相似文献   

5.
Genetic analysis of natural variation in ecotypes of Arabidopsis thaliana can facilitate the discovery of new genes or of allelic variants of previously identified genes controlling physiological processes in plants. We mapped quantitative trait loci (QTL) for light response in recombinant inbred lines (RILs) derived from the Columbia and Kashmir accessions via two methods: composite interval mapping and eXtreme array mapping (XAM). After measuring seedling hypocotyl lengths in blue, red, far-red, and white light, and in darkness, eight QTL were identified by composite interval mapping and five localized near photoreceptor loci. Two QTL in blue light were associated with CRY1 and CRY2, two in red light were near PHYB and PHYC, and one in far-red light localized near PHYA. The RED2 and RED5 QTL were verified in segregating lines. XAM was tested for the identification of QTL in red light with pools of RILs selected for extreme phenotypes. Thousands of single feature polymorphisms detected by differential DNA hybridized to high-density oligo-nucleotide arrays were used to estimate allele frequency differences between the pools. The RED2 QTL was identified clearly; differences exceeded a threshold of significance determined by simulations. The sensitivities of XAM to population type and size and genetic models were also determined by simulation analysis.  相似文献   

6.
Selective DNA pooling was employed in a daughter design to screen all bovine autosomes for quantitative trait loci (QTL) affecting estimated breeding value for milk protein percentage (EBVP%). Milk pools prepared from high and low daughters of each of seven sires were genotyped for 138 dinucleotide microsatellites. Shadow-corrected estimates of sire allele frequencies were compared between high and low pools. An adjusted false discovery rate (FDR) method was employed to calculate experimentwise significance levels and empirical power. Significant associations with milk protein percentage were found for 61 of the markers (adjusted FDR = 0.10; estimated power, 0.68). The significant markers appear to be linked to 19--28 QTL. Mean allele substitution effects of the putative QTL averaged 0.016 (0.009--0.028) in units of the within-sire family standard deviation of EBVP% and summed to 0.460 EBVP%. Overall QTL heterozygosity was 0.40. The identified QTL appear to account for all of the variation in EBVP% in the population. Through use of selective DNA pooling, 4400 pool data points provided the statistical power of 600,000 individual data points.  相似文献   

7.
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.  相似文献   

8.
Composite interval mapping (CIM) has been successfully applied to the detection of QTL in experimental animals and plants. However, practical analyses based on CIM have been reported mainly for populations derived from cross between inbred lines. There are few studies on QTL analyses with CIM in outbred populations. To evaluate the applicability of CIM to outbred populations is prerequisite for the fine mapping of QTL in industrial animals such as pig and chicken. Some markers are usually not fully informative in outbred populations. In application of CIM to outbred populations, the influence of inclusion of such uninformative markers used as covariates on the efficiency of CIM should be investigated. In this paper a least-squares method for CIM was formalized in an F(2) population derived by crossing two outbred lines. The efficiencies of CIM were evaluated for outbred populations in comparison with simple interval mapping (SIM) for several cases of marker informativeness using simulations. By incorporating markers linked to a tested position as well as those unlinked, CIM showed a higher efficiency to separate two linked QTL over SIM. The efficiency of dissection was enhanced as the marker informativeness was increased. The power of CIM to detect an isolated QTL was improved by excluding markers linked to a tested position from covariates and higher than SIM regardless of marker informativeness. In conclusion, CIM is a useful procedure for the analysis of QTL in outbred populations even under low marker informativeness.  相似文献   

9.
Genome-wide association studies have become possible in the chicken because of the recent availability of the complete genome sequence, a polymorphism map and high-density single nucleotide polymorphism (SNP) genotyping platforms. We used these tools to study the genetic basis of a very high level of heterosis that was previously observed for fatness in two F2 populations established by crossing one outbred broiler (meat-type) sire with dams from two unrelated, highly inbred, light-bodied lines (Fayoumi and Leghorn). In each F2 population, selective genotyping was carried out using phenotypically extreme males for abdominal fat percentage (AF) and about 3000 SNPs. Single-point association analysis of about 500 informative SNPs per cross showed significant association ( P  < 0.01) of 15 and 24 markers with AF in the Broiler × Fayoumi and Broiler × Leghorn crosses respectively. These SNPs were on 10 chromosomes (GGA1, 2, 3, 4, 7, 8, 10, 12, 15 and 27). Interestingly, of the 39 SNPs that were significantly associated with AF, there were about twice as many homozygous genotypes associated with higher AF that traced back to the inbred lines alleles, although the broiler line had on average higher AF. These SNPs are considered to be associated with QTL with cryptic alleles. This study reveals cryptic alleles as an important factor in heterosis for fatness observed in two chicken F2 populations, and suggests epistasis as the common underlying mechanism for heterosis and cryptic allele expression. The results of this study also demonstrate the power of high marker-density SNP association studies in discovering QTL that were not detected by previous microsatellite-based genotyping studies.  相似文献   

10.
P C Phillips  M C Whitlock  K Fowler 《Genetics》2001,158(3):1137-1145
The pattern of genetic covariation among traits (the G matrix) plays a central role in determining the pattern of evolutionary change from both natural selection and random genetic drift. Here we measure the effect of genetic drift on the shape of the G matrix using a large data set on the inheritance of wing characteristics in Drosophila melanogaster. Fifty-two inbred lines with a total of 4680 parent-offspring families were generated by one generation of brother-sister mating and compared to an outbred control population of 1945 families. In keeping with the theoretical expectation for a correlated set of additively determined traits, the average G matrix of the inbred lines remained proportional to the outbred control G matrix with a proportionality constant approximately equal to (1 - F), where F is the inbreeding coefficient. Further, the pattern of covariance among the means of the inbred lines induced by inbreeding was also proportional to the within-line G matrix of the control population with a constant very close to the expectation of 2F. Although the average G of the inbred lines did not show change in overall structure relative to the outbred controls, separate analysis revealed a great deal of variation among inbred lines around this expectation, including changes in the sign of genetic correlations. Since any given line can be quite different from the outbred control, it is likely that in nature unreplicated drift will lead to changes in the G matrix. Thus, the shape of G is malleable under genetic drift, and the evolutionary response of any particular population is likely to depend on the specifics of its evolutionary history.  相似文献   

11.
We report on a complete genome scan for quantitative trait loci (QTL) affecting milk protein percentage (PP) in the Italian Holstein-Friesian cattle population, applying a selective DNA pooling strategy in a daughter design. Ten Holstein-Friesian sires were chosen, and for each sire, about 200 daughters, each from the high and low tails of estimated breeding value for PP, were used to construct milk DNA pools. Sires and pools were genotyped for 181 dinucleotide microsatellites covering all cattle autosomes. Sire marker allele frequencies in the pools were obtained by shadow correction of peak height in the electropherograms. After quality control, pool data from eight sires were used for all subsequent analyses. The QTL heterozygosity estimate was lower than that of similar studies in other cattle populations. Multiple marker mapping identified 19 QTL located on 14 chromosomes (BTA1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 23 and 27). The sires were also genotyped for seven polymorphic sites in six candidate genes (ABCG2, SPP1, casein kappa, DGAT1, GHR and PRLR) located within QTL regions of BTA6, 14 and 20 found in this study. The results confirmed or excluded the involvement of some of the analysed markers as the causative polymorphic sites of the identified QTL. The QTL identified, combined with genotype data of these candidate genes, will help to identify other quantitative trait genes and clarify the complex QTL patterns observed for a few chromosomes. Overall, the results are consistent with the Italian Holstein population having been under long-term selection for high PP.  相似文献   

12.
A set of 33 cattle microsatellite primer pairs was tested with the DNA of American bison from a captive population in Belgium and evaluated for usefulness in parentage testing. Two primer sets did not amplify and three were monomorphic. Among the polymorphic markers, the number of alleles ranged from two to nine. Heterozygosity, polymorphism information content (PIC) and probability of exclusion (PE) values were low by comparison with those obtained with the same markers in cattle. Two methods of estimating PE were used, one which assumed equal allele frequencies between parental sexes and another which took into account differences in allele frequencies between parental sexes. An internationally accepted set of nine microsatellites gives cumulative PE values of 0·98 and 0·97, respectively, for the two methods. The potential of this marker set to identify bison × cattle hybrids is discussed. Because bison and cattle have a common ancestor, these microsatellites are a useful way to establish genetic distances and can lead to the construction of phylogenetic trees.  相似文献   

13.
Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 - probably due to the halothane alleles - and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied.  相似文献   

14.
A. Darvasi  M. Soller 《Genetics》1995,141(3):1199-1207
An advanced intercrossed line (AIL) is an experimental population that can provide more accurate estimates of quantitative trait loci (QTL) map location than conventional mapping populations. An AIL is produced by randomly and sequentially intercrossing a population that initially originated from a cross between two inbred lines or some variant thereof. This provides increasing probability of recombination between any two loci. Consequently, the genetic length of the entire genome is stretched, providing increased mapping resolution. In this way, for example, with the same population size and QTL effect, a 95% confidence interval of QTL map location of 20 cM in the F(2) is reduced fivefold after eight additional random mating generations (F(10)). Simulation results showed that to obtain the anticipated reduction in the confidence interval, breeding population size of the AIL in all generations should comprise an effective number of >/=100 individuals. It is proposed that AILs derived from crosses between known inbred lines may be a useful resource for fine genetic mapping.  相似文献   

15.
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.  相似文献   

16.
Amplified fragment length polymorphisms (AFLPs) are a widely used marker system: the technique is very cost-effective, easy and rapid, and reproducibly generates hundreds of markers. Unfortunately, AFLP alleles are typically scored as the presence or absence of a band and, thus, heterozygous and dominant homozygous genotypes cannot be distinguished. This results in a significant loss of information, especially as regards mapping of quantitative trait loci (QTLs). We present a Monte Carlo Markov Chain method that allows us to compute the identity by descent probabilities (IBD) in a general pedigree whose individuals have been typed for dominant markers. The method allows us to include the information provided by the fluorescent band intensities of the markers, the rationale being that homozygous individuals have on average higher band intensities than heterozygous individuals, as well as information from linked markers in each individual and its relatives. Once IBD probabilities are obtained, they can be combined into the QTL mapping strategy of choice. We illustrate the method with two simulated populations: an outbred population consisting of full sib families, and an F2 cross between inbred lines. Two marker spacings were considered, 5 or 20 cM, in the outbred population. There was almost no difference, for the practical purpose of QTL estimation, between AFLPs and biallelic codominant markers when the band density is taken into account, especially at the 5 cM spacing. The performance of AFLPs every 5 cM was also comparable to that of highly polymorphic markers (microsatellites) spaced every 20 cM. In economic terms, QTL mapping with a dense map of AFLPs is clearly better than microsatellite QTL mapping and little is lost in terms of accuracy of position. Nevertheless, at low marker densities, AFLPs or other biallelic markers result in very inaccurate estimates of QTL position.  相似文献   

17.
Early-generation hybrid fitness is difficult to interpret because heterosis can obscure the effects of hybrid breakdown. We used controlled reciprocal crosses and common garden experiments to distinguish between effects of heterosis and nuclear and cytonuclear epistasis among morphotypes and advanced-generation hybrid derivative populations in the Piriqueta caroliniana (Turneraceae) plant complex. Seed germination, growth, and sexual reproduction of first-generation hybrids, inbred parental lines, and outbred parental lines were compared under field conditions. Average vegetative performance was greater for hybrids than for inbred lines, and first-season growth was similar for hybrids and outbred parental lines. Hybrid survival surpassed that of inbred lines and was equal to or greater than outbred lines' survival, and more F(1) than parental plants reproduced. Reductions in hybrid fitness due to Dobzhansky-Muller incompatibilities (epistasis among divergent genetic elements) were expressed as differences in vegetative growth, survival, and reproduction between plants from reciprocal crosses for both F(1) and backcross hybrid generations. Comparing performance of hybrids against parental genotypes from intra- and interpopulation crosses allowed a more robust prediction of F(1) hybrids' success and more accurate interpretations of the genetic architecture of F(1) hybrid vigor.  相似文献   

18.
Liu Y  Zeng ZB 《Genetical research》2000,75(3):345-355
Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the efficiency of a QTL mapping study. A general statistical method using mixture model procedures and the EM algorithm is developed for mapping QTL from various cross designs of multiple inbred lines. The general procedure features three cross design matrices, W, that define the contribution of parental lines to a particular cross and a genetic design matrix, D, that specifies the genetic model used in multiple line crosses. By appropriately specifying W matrices, the statistical method can be applied to various cross designs, such as diallel, factorial, cyclic, parallel or arbitrary-pattern cross designs with two or multiple parental lines. Also, with appropriate specification for the D matrix, the method can be used to analyse different kinds of cross populations, such as F2 backcross, four-way cross and mixed crosses (e.g. combining backcross and F2). Simulation studies were conducted to explore the properties of the method, and confirmed its applicability to diverse experimental designs.  相似文献   

19.
Leips J  Mackay TF 《Genetics》2000,155(4):1773-1788
The genetic architecture of variation in adult life span was examined for a population of recombinant inbred lines, each of which had been crossed to both inbred parental strains from which the lines were derived, after emergence from both high and low larval density. QTL affecting life span were mapped within each sex and larval density treatment by linkage to highly polymorphic roo-transposable element markers, using a composite interval mapping method. We detected a total of six QTL affecting life span; the additive effects and degrees of dominance for all were highly sex- and larval environment-specific. There were significant epistatic interactions between five of the life span QTL, the effects of which also differed according to genetic background, sex, and larval density. Five additional QTL were identified that contributed to differences among lines in their sensitivity to variation in larval density. Further fine-scale mapping is necessary to determine whether candidate genes within the regions to which the QTL map are actually responsible for the observed variation in life span.  相似文献   

20.
A resource population was established by crossing one modern broiler sire from a commercial broiler breeder male line with dams from two unrelated highly inbred lines; F1 birds were intercrossed to produce two F2 populations. A variety of phe notypic measurements related to growth, muscling, internal organs, and skeleton were recorded for the F2 populations and contemporary pure inbred and broiler birds. Based on the means and phenotypic distributions of the F2 populations com pared to their parental lines, the effective number of genes affecting each trait and heterosis were estimated and discussed relative to the known genetic selection history for each trait. The results suggest that a high number of genes with small epistatic effects are involved in determining the phenotype for traits that broilers were traditionally selected for, and a lower number of genes with major effects are involved in determining the phenotype for traits related to fitness. The estimated number of genes and the phenotypic distributions of the different traits suggest that a quantitative trait loci (QTL) search might be more effectively applied for traits with a low number of involved genes and a high phenotypic distribution among the F2 birds than for traits that show a lower phenotypic distribution and a high number of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号