首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanisms of conspecific sperm precedence in Drosophila   总被引:1,自引:0,他引:1  
The postmating, prezygotic isolating mechanism known as conspecific sperm precedence (CSP) may play an important role in speciation, and understanding the mechanism of CSP is important in reconstructing its evolution. When a Drosophila simulans female mates with both a D. simulans male and a D. mauritiana male, the vast majority of her progeny are fathered by D. simulans, regardless of the order of mating. The dearth of hybrid progeny does not result from inviability of eggs fertilized by heterospecific sperm or from the relative inviability of heterospecific larvae. Instead, CSP apparently results from a prefertilization obstacle to heterospecific sperm. We identified two independent barriers to heterospecific fertilization, sperm displacement and incapacitation, whose action depends on the order of mating. When a D. simulans female mates first with a conspecific male, the seminal fluid from this mating incapacitates heterospecific sperm transferred two days later. This sperm incapacitation occurs with no change in the retention of stored sperm over time, but does not occur when the conspecific mating lasts for only 5 min. When the order of matings is reversed, the seminal fluid from the second mating physically displaces heterospecific sperm from storage, even if the conspecific copulation lasts only 5 min. Conspecific sperm are not susceptible to displacement by a second conspecific copulation, but are susceptible to interference by heterospecific sperm if the conspecific copulation is interrupted after 12 min. Curing the D. mauritiana males of their infection with the endosymbiont Wolbachia had no effect on CSP. Sperm displacement and incapacitation involve the same basic mechanisms seen in second-male sperm precedence within species, supporting the hypothesis that CSP is an evolutionary by-product of adaptations affecting sperm competition within species.  相似文献   

2.
Abstract Barriers to gene flow that act after mating but before fertilization are often overlooked in studies of reproductive isolation. Where species are sympatric, such "cryptic' isolating barriers may be important in maintaining species as distinct entities. Drosophilayakuba and its sister species D. santomea have overlapping ranges on the island of Sao Tome, off the coast of West Africa. Previous studies have shown that the two species are strongly sexually isolated. However, the degree of sexual isolation observed in the laboratory cannot explain the low frequency (–1%) of hybrids observed in nature. This study identifies two "cryptic" isolating barriers that may further reduce gene flow between D. yakuba andD. santomea where they are sympatric. First, noncompetitive gametic isolation has evolved between D. yakuba and D. santomea: heterospecific matings between the two species produce significantly fewer offspring than do conspecific matings. Second, conspecific sperm precedence (CSP) occurs when D. yakuba females mate with conspecific and heterospecific males. However, CSP is asymmetrical: D. santomea females do not show patterns of sperm usage consistent with CSP. Drosophila yakuba and D. santomea females also differ with respect to remating propensity after first mating with conspecific males. These results suggest that noncompetitive and competitive gametic isolating barriers may contribute to reproductive isolation between D. yakuba and D. santomea.  相似文献   

3.
Nontransitivity of sperm precedence in Drosophila   总被引:2,自引:0,他引:2  
Abstract.— Sperm competition is an important component of fitness in Drosophila , but we still do not have a clear understanding of the unit of selection that is relevant to sperm competition. Here we demonstrate that sperm competitive ability is not a property of the sperm haplotype, but rather of the diploid male's genotype. Then we test whether the relative sperm competitive ability of males can be ranked on a linear array or whether competitive ability instead depends on particular pairwise contests among males. Sperm precedence of six chromosome-extracted lines was tested against three different visible marker lines ( cn bw, bwD , and Cy ), and the rank order of the six lines differed markedly among the mutant lines. Population genetic theory has shown that departures from transitivity of sperm precedence may be important to the maintenance of polymorphism for genes that influence sperm competitive ability. The non-transitivity seen in sperm precedence should theoretically increase the opportunity for polymorphism in genes that influence this phenotype.  相似文献   

4.
Conspecific gamete precedence, the usage of conspecific sperm by a female that mates with both a conspecific and a heterospecific male, has been found in many taxa. We construct a population genetic model to examine the evolution of conspecific gamete precedence and its coevolution with premating isolation in the process of reinforcement. Our findings suggest that conspecific gamete precedence can evolve via a process very similar to reinforcement. We explore the nature of the selection against hybridization necessary to drive this evolution. Moreover, our results confirm the prediction of Marshall et al. (Trends Ecol. Evol. 2002;17:558-563) that conspecific gamete precedence will inhibit the evolution of reinforcement between two species. We further find that reinforcement will inhibit the evolution of conspecific gamete precedence. Both reinforcement and conspecific gamete precedence increase reproductive isolation and contribute to the process of speciation. We discuss factors that may affect which of these phenomena are likely to become predominant between incipient species.  相似文献   

5.
Conspecific sperm precedence occurs when females are exposed to sperm from males of multiple species, but preferentially use sperm of a conspecific. Conspecific sperm precedence and its mechanisms have been documented widely in terrestrial species, in which complex female behaviors or reproductive tract morphologies can allow many opportunities for female choice and sperm competition, however, the opportunity for conspecific sperm precedence in free spawning marine invertebrates has been largely ignored. Two sea urchin species, Echinometra oblonga and E. sp. C, have high levels of interspecific fertilization in no-choice lab crosses, but no natural hybrids have been found. We performed competitive fertilization assays to test for conspecific sperm precedence and found that eggs of both species showed a marked preference for conspecific sperm when fertilized with heterospecific sperm mixtures. Strong rejection of heterospecific sperm would not have been predicted from no-choice assays and helps explain the lack of natural hybrids. We also found significant variation in hybridization success among crosses. Conspecific sperm precedence in free spawning invertebrates shows that the simple surfaces of eggs and sperm provide ample opportunity for egg choice and sperm competition even in the absence of intricate behavior or complex reproductive morphologies.  相似文献   

6.
Identifying the manner in which reproductive barriers accumulate during lineage divergence is central to establishing general principles of species formation. One outstanding question is which isolating mechanisms form the first complete barrier to gene flow in a given lineage or under a particular set of conditions. To identify these initial reproductive barriers requires examining lineages in very early stages of divergence, before multiple reproductive barriers have evolved to completion. We quantified the strength of three postmating barriers in a pair of darter species and compared these estimates to each other and to the strength of behavioral isolation (BI) reported in a previous study. Results reveal no evidence of gametic incompatibility but intermediate levels of conspecific sperm precedence and hybrid inviability. As BI is nearly complete, our analysis comparing the strength of multiple reproductive barriers implicates the evolution of mate choice as central to both the origin and maintenance of these species. Further examination of ecological isolation and hybrid sterility is necessary to determine the role of these barriers in darter speciation.  相似文献   

7.
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping.  相似文献   

8.
Mechanisms that prevent different species from interbreeding are fundamental to the maintenance of biodiversity. Barriers to interspecific matings, such as failure to recognize a potential mate, are often relatively easy to identify. Those occurring after mating, such as differences in the how successful sperm are in competition for fertilisations, are cryptic and have the potential to create selection on females to mate multiply as a defence against maladaptive hybridization. Cryptic advantages to conspecific sperm may be very widespread and have been identified based on the observations of higher paternity of conspecifics in several species. However, a relationship between the fate of sperm from two species within the female and paternity has never been demonstrated. We use competitive microsatellite PCR to show that in two hybridising cricket species, Gryllus bimaculatus and G. campestris, sequential cryptic reproductive barriers are present. In competition with heterospecifics, more sperm from conspecific males is stored by females. Additionally, sperm from conspecific males has a higher fertilisation probability. This reveals that conspecific sperm precedence can occur through processes fundamentally under the control of females, providing avenues for females to evolve multiple mating as a defence against hybridization, with the counterintuitive outcome that promiscuity reinforces isolation and may promote speciation.  相似文献   

9.
Negative interspecific mating interactions, known as reproductive interference, can hamper species coexistence in a local patch and promote niche partitioning or geographical segregation of closely related species. Conspecific sperm precedence (CSP), which occurs when females that have mated with both conspecific and heterospecific males preferentially use conspecific sperm for fertilization, might contribute to species coexistence by mitigating the costs of interspecific mating and hybridization. We discussed whether two species exhibiting CSP can coexist in a local environment in the presence of reproductive interference. First, using a behaviorally explicit mathematical model, we demonstrated that two species characterized by negative mating interactions are unlikely to coexist because the costs of reproductive interference, such as loss of mating opportunity with conspecific partners, are inevitably incurred when individuals of both species are present. Second, we experimentally examined differences in mating activity and preference in two Harmonia ladybird species known to exhibit CSP. These behavioral differences may lead to local extinction of H. yedoensis because of reproductive interference by H. axyridis. This prediction is consistent with field observations that H. axyridis uses various food sources and habitats whereas H. yedoensis is confined to a less preferred prey item and a pine tree habitat. Finally, by a comparative approach, we observed that niche partitioning or parapatric distribution, but not sympatric coexistence in the same habitat, is maintained between species with CSP belonging to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial environments. Taken together, it is possible that reproductive interference may destabilize local coexistence even in closely related species that exhibit CSP.  相似文献   

10.
11.
The evolutionary sequence of events in the evolution of reproductive barriers between species is at the core of speciation biology. Where premating barriers fail, post-mating barriers, such as conspecific sperm precedence (CSP), gamete incompatibility (GI) and hybrid inviability (HI) may evolve to prevent the production of (often) costly hybrid offspring with reduced fitness. We tested the role of post-mating mechanisms for the reproductive isolation between two sunfish species [bluegill (BG) Lepomis macrochirus and pumpkinseed (PS) Lepomis gibbosus] and their first-generation hybrids. Performing in vitro sperm competition experiments, we observed asymmetric CSP as main post-mating isolation mechanism when BG and PS sperm were competing for PS eggs, whereas when sperm from both species were competing for BG eggs it was HI. Furthermore, hybrid sperm--although fertile in the absence of competition--were outcompeted by sperm of either parental species. This result may at least partly explain previous observations that natural hybridization in the study system is unidirectional.  相似文献   

12.
Behavioural differences are thought to be the first components to contribute to species isolation, yet the precise genetic basis of behavioural isolation remains poorly understood. Here, we used a combination of behaviour assays and genetic mapping to provide the first refined map locating candidate genes for interspecific female preference isolating Drosophila simulans from D. melanogaster. First, we tested whether two genes identified as affecting D. melanogaster female intraspecific mate choice also affect interspecific mate choice; neither of these genes was found to contribute to species‐specific female preference. Next, we used deficiency mapping to locate genes on the right arm of the third chromosome for species‐specific female preference and identified five small significant regions that contain candidate genes contributing to behavioural isolation. All five regions were located in areas that would have low interspecific recombination, which mirrors the results of other behavioural isolation studies that used quantitative trait locus (QTL) mapping, but without the potential concern of bias towards regions of low recombination that QTL mapping may have. As this model system may be refined to the individual gene level using the same methodology, this initial map we provide may potentially serve as a ready template for the identification and characterization of the first behavioural isolation genes.  相似文献   

13.
Predispersal copulation and unpredictable environment facilitate the evolution of female-biased dispersal in species, where females are functionally monandrous. Females should migrate and reproduce over different habitats to spread their risks due to environmental fluctuation. On the other hand, males do not have to disperse because their risks are spread by their mating partners who produce their offspring in different habitats. However, when females are functionally polyandrous, it is expected that they will not contribute to spreading the male's risk extensively. Therefore, by simulation with the individual based model, the present study evaluated how female polyandry influences the sexual difference in dispersal timing. This model revealed that when females are polyandrous, the timing of female remating and sperm priority patterns have an important influence on the evolution of sex-biased dispersal. Particularly when female remating is not synchronized with dispersal or when last-male sperm precedence does not exist, female-biased dispersal is evolved.  相似文献   

14.
Conspecific sperm precedence is widespread in animals, appears to evolve rapidly, and is thought to have the potential to prevent hybridization between closely related species. However, to date no study has tested the isolating potential of such a barrier in mixed populations of two taxa under conditions in which other potential barriers to gene flow are controlled for or are prevented from operating. We tested the isolating potential of conspecific sperm precedence in the ground crickets Allonemobius fasciatus and A. socius in population cage experiments in which the frequency of the two species was varied. Despite the observation of abundant interspecific matings, the proportions of hybrid progeny were low and differed statistically from the proportions expected in the absence of conspecific sperm precedence. The results demonstrate that conspecific sperm precedence can severely limit gene flow between closely related species, even when one species is less abundant than the other.  相似文献   

15.
Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event.  相似文献   

16.
Abstract.— We have investigated the effects of experimental manipulation of copulation duration on sperm displacement in Drosophila melanogaster . Both spermless and normal males were used as second (displacing) males in the experiments. Displacement induced in the absence of sperm, that is, by males that pass accessory gland fluid alone, was a relatively inefficient process and produced much lower levels of displacement than normal males. Therefore, the presence of second-male sperm is necessary (but unlikely sufficient) for the high levels of displacement commonly observed in D. melanogaster . Furthermore, when second matings were interrupted at various times after the initiation of copulation, the distribution of displacement was strongly bimodal. We conclude that sperm transfer is relatively rapid, beginning shortly after the initiation of copulation, and is essentially complete before the midpoint of copulation. Therefore, sperm transfer bears no simple relation to copulation duration. Because it would be difficult to manipulate the numbers of sperm transferred by manipulating copulation duration, methods used to study sperm displacement in other insect species are unlikely to be appropriate for D. melanogaster . We also investigated why males mate for more than twice the duration that appears to be necessary to complete sperm transfer. Experimental interruption of first matings indicated that the extra copulation time serves to delay female remating, rather than to increase that rate at which of offspring are sired before remating.  相似文献   

17.
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization.  相似文献   

18.
In promiscuously mating species, there is strong selection on males to maximize their share of paternity through both defensive and offensive means. This has been most extensively examined using the Drosophila melanogaster model system. In these studies, sperm competition has been examined by mating a virgin female to two consecutive males and then determining the fertilization success of both the first male (defending, P1) and the second male (offending, P2). Recent evidence suggests that male defense may be influenced by female mating history (i.e., virgin versus nonvirgin). Here, by mating females to males with three different genotypes, we show that female mating history does not affect male defensive or offensive abilities in sperm competition. We also show that, although female lifetime fecundity was not correlated with the number of times that she mated, it was reduced by increased exposure to males. These data indicate that measures of P1 and P2 previously reported in D. melanogaster may be robust to the specific mating history of the females used in these studies.  相似文献   

19.
Despite the importance of sexual isolation to speciation, few studies have analyzed the genetic basis of interspecific mating discrimination, particularly using hybrid males. In this study, I investigated the genetic basis of sexual isolation using male hybrids of Drosophila pseudoobscura and D. persimilis. Hybrid male mating success was caused by interactions between the X-chromosome and autosomes (or Y-chromosome), and different arms of the X-chromosome contributed to mating success with females of each species. Further, although there was an X-chromosome component to mating success, its magnitude was not disproportionately large when compared with the proportion of the genome contained on this chromosome. Some hybrid males courted with an anomalously low intensity, so I simultaneously mapped the genetic basis of this “courtship dysfunction.” The courtship dysfunction was caused by an interaction between the left arm of the X-chromosome in D. persimilis with the autosomes or Y-chromosome from D. pseudoobscura. Anomalous courtship behavior in interspecific hybrids can obscure the conclusions of studies of the genetics of sexual isolation, so courtship intensity should be evaluated in all such investigations.  相似文献   

20.
Abstract. The libellulid dragonfly, Nanophya pygmaea Rambur, has an average ejaculate volume of 0.16 mm3. During successive copulations the volume of sperm stored in the female's sperm storage organs increases in steps equivalent to this volume, suggesting that the sperm competition mechanism in this species is sperm repositioning, i.e. adding an ejaculate to what is already present in the female's sperm storage organ. By using sterile/normal males in double matings with females we have shown that this mechanism results in last male sperm precedence (P2= 0.979).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号