首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Wild-type (wt) Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were grown in hydroponics under two levels of nitrate, 0.2 versus 6 mM, and two levels of CO(2), 35 versus 100 Pa. Growth (fresh weight and leaf area basis) was highest in wt plants, lower in TL46, and much lower in TL25 plants under a given treatment. It is surprising that the inability to synthesize starch restricted leaf area development under both low N (N(L)) and high N (N(H)). For each genotype, the order of greatest growth among the four treatments was high CO(2)/N(H) > low CO(2)/N(H), > high CO(2)/N(L), which was similar to low CO(2)/N(L). Under high CO(2)/N(L), wt and TL46 plants retained considerable starch in leaves at the end of the night period, and TL25 accumulated large amounts of soluble sugars, indicative of N-limited restraints on utilization of photosynthates. The lowest ribulose-1,5-bisphosphate carboxylase/oxygenase per leaf area was in plants grown under high CO(2)/N(L). When N supply is limited, the increase in soluble sugars, particularly in the starch mutants, apparently accentuates the feedback and down-regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase, resulting in greater reduction of growth. With an adequate supply of N, growth is limited in the starch mutants due to insufficient carbohydrate reserves during the dark period. A combination of limited N and a limited capacity to synthesize starch, which restrict the capacity to use photosynthate, and high CO(2), which increases the potential to produce photosynthate, provides conditions for strong down-regulation of photosynthesis.  相似文献   

2.
Huber SC  Hanson KR 《Plant physiology》1992,99(4):1449-1454
We have further characterized the photosynthetic carbohydrate metabolism and growth of a starchless mutant (NS 458) of Nicotiana sylvestris that is deficient in plastid phosphoglucomutase (Hanson KR, McHale NA [1988] Plant Physiol 88: 838-844). In general, the mutant had only slightly lower rates of photosynthesis under ambient conditions than the wild type. However, accumulation of soluble sugars (primarily hexose sugars) in source leaves of the mutant compensated for only about half of the carbon stored as starch in the wild type. Therefore, the export rate was slightly higher in the mutant relative to the wild type. Starch in the wild type and soluble sugars in the mutant were used to support plant growth at night. Growth of the mutant was progressively restricted, relative to wild type, when plants were grown under shortened photoperiods. When grown under short days, leaf expansion of the mutant was greater during the day, but was restricted at night relative to wild-type leaves, which expanded primarily at night. We postulate that restricted growth of the mutant on short days is the result of several factors, including slightly lower net photosynthesis and inability to synthesize starch in both source and sink tissues for use at night. In short-term experiments, increased “sink demand” on a source leaf (by shading all other source leaves) had no immediate effect on starch accumulation during the photoperiod in the wild type or on soluble sugar accumulation in the mutant. These results would be consistent with a transport limitation in N. sylvestris such that not all of the additional carbon flux into sucrose in the mutant can be exported from the leaf. Consequently, the mutant accumulates hexose sugars during the photoperiod, apparently as the result of sucrose hydrolysis within the vacuole by acid invertase.  相似文献   

3.
Transgenic potato plants expressing reduced levels of the chloroplastic isoform of fructose-1,6-bisphosphatase (cp-FBPase) were created via the antisense RNA technique. Transformants with different levels of FBPase activity were selected and analysed with respect to photosynthesis, carbon metabolism, and growth. FBPase activity of less than 15% of wild-type levels led to reduced growth rates, probably due to the reduction of photosynthetic activity. A significant decrease in tuber yield is observed in plants with a FBPase activity below 15% of wild-type levels, whereas plants with 36% of wild-type enzyme activity still give normal tuber yields, even though they demonstrate a lowered photosynthetic capacity. Decreased photosynthesis also results in a reduction of total carbohydrate contents in leaves. Interestingly, increased carbohydrate partitioning towards soluble sugars is observed in plants displaying less than 15% of the wild-type FBPase activity. When excised leaf discs are placed on sucrose-containing media in darkness, discs derived from plants with a reduced FBPase activity accumulate higher amounts of starch. Possible implications are discussed.  相似文献   

4.
Our objective was to examine alterations in carbohydrate status of leaf meristems that are associated with nitrogen-induced changes in leaf elongation rates of tall fescue (Festuca arundinacea Schreb.). Dark respiration rates, concentrations of nonstructural carbohydrates, and soluble proteins were measured in leaf intercalary meristems and adjacent segments of elongating leaves. The two genotypes used differed by 43% in leaf elongation rate. Application of high nitrogen (336 kilograms per hectare) resulted in 140% higher leaf elongation rate when compared to plants receiving low nitrogen (22 kilograms per hectare). Leaf meristems of plants receiving high and low nitrogen had dark respiration rates of 5.4 and 2.9 microliters O2 consumed per milligram structural dry weight per hour, respectively. Concentrations of soluble proteins were lower while concentrations of fructan tended to be slightly higher in leaf meristems of low-nitrogen plants when compared to high-nitrogen plants. Concentrations of reducing sugars, nonreducing sugars, and takadiastase-soluble carbohydrate of leaf meristems were not affected by nitrogen treatment. Total nonstructural carbohydrates of leaf meristems averaged 44 and 39% of dry weight for low- and high-nitrogen plants, respectively. Within the leaf meristem, approximately 74 and 34% of the pool of total nonstructural carbohydrate could be consumed per day in high- and low-nitrogen plants, respectively, assuming no carbohydrate import to the meristem occurred. Plants were able to maintain high concentrations of nonstructural carbohydrates in leaf meristems despite a 3-fold range in leaf elongation rates, suggesting that carbohydrate synthesis and transport to leaf intercalary meristems may not limit leaf growth of these genotypes.  相似文献   

5.
The gradients in photosynthetic and carbohydrate metabolism which persist within the fully expanded second leaf of barley ( Hordeum vulgare ) were examined. Although all regions of the leaf blade were green and photosynthetically active, the basal 5 cm, representing approximately 20% of the leaf area, retained some characteristics of sink tissue. The leaf blade distal from the leaf sheath exhibited characteristics typical of source tissue; the activities of sucrolytic enzymes (invertase and sucrose synthase) were relatively low, whilst that of sucrose phosphate synthase was high. These regions of the leaf accumulated sucrose throughout the photoperiod and starch only in the second half of the photoperiod whilst hexose sugars remained low. By contrast the leaf blade proximal to the leaf sheath retained relatively high activities of sucrolytic enzymes (especially soluble, acid invertase) whilst sucrose phosphate synthase activity was low. Glucose, as well as sucrose, accumulated throughout the photoperiod. Although starch accumulated in the second half of the photoperiod, a basal level of starch was present throughout the photoperiod, by contrast with the rest of the leaf. The 14CO2 feeding experiments indicated that a constant amount of photosynthate was partitioned towards starch in this region of the leaf irrespective of irradiance. These findings are interpreted as the base of the leaf blade acting as a localized sink for carbohydrate as a result of sucrose hydrolysis by acid invertase.  相似文献   

6.
FARRAR  J. F. 《Annals of botany》1981,48(1):53-63
The respiration rate of roots on intact barley plants grownin 16 h light 8 h dark cycles shows an exponential decay inthe dark, rises on re-illumination and there is a transientfall 12–14 h into the photoperiod Roots of plants placedin the dark for up to 48 h show a continued exponential decay,and a rather small fall in soluble carbohydrate levels The respirationof roots excised from predarkened plants does not rise on additionof sucrose to the medium bathing them Respiration rate, measured10 h into the photoperiod, shows a constant relation to rootweight in plants 8–24 days old, during which time rootcarbohydrate content first falls and later rises It is concludedthat root respiration rate is not a simple function of carbohydratesupply from the shoot The importance of root respiration inthe carbon budget of barley plants is evaluated and the levelsof control operating on root respiration rate are briefly discussed Hordeum distichum (L ) Lam, barley, respiration rate, light, carbohydrate  相似文献   

7.
Continuous monitoring of steady-state carbon dioxide exchange rates in mature muskmelon (Cucumis melo L.) leaves showed diurnal patterns of photosynthesis and respiration that were translated into distinct patterns of accumulation and phloem export of soluble sugars and amino acids. Leaf soluble sugar patterns in general followed the pattern of photosynthetic activity observed in the leaf, whereas starch accumulated steadily throughout the light period. Sugar and starch levels declined through the dark phase. Phloem exudate analysis revealed that diurnal levels of the major transport sugars (stachyose and sucrose) in the phloem did not appear to correlate directly with the photosynthetic activity of the leaf but instead were inversely correlated with leaf starch accumulation and degradation. The amino acid pool in leaf tissues remained constant throughout the diurnal period; however, the relative contribution of individual amino acids to the total pool varied with the diurnal photosynthetic and respiratory activity of the leaf. In contrast, the phloem sap amino acid pool size was substantially larger in the light than in the dark, a result primarily due to enhanced export of glutamine, glutamate, and citrulline during the light period. The results indicate that the sugar and amino acid composition of cucurbit phloem sap is not constant but varies throughout the diurnal cycle in response to the metabolic activities of the source leaf.  相似文献   

8.
Dietz KJ  Heilos L 《Plant physiology》1990,93(3):1219-1225
Spinach (Spinacea oleracea) plants were grown either continuously on complete nutrient solutions or for 2 weeks on media deficient in phosphate or sulfate. To characterize leaf carbohydrate metabolism, levels of phosphorylated intermediates, activities of enzymes involved in photosynthetic carbon metabolism, contents of soluble and acid hydrolyzable sugars were measured in leaves differing in age and mineral status and related to leaf rates of photosynthesis and assimilate partitioning. Concentrations of metabolites—particularly those which are preferentially compartmented in the cytosol—decreased from young to old leaves and were lowest in old phosphate starved leaves. Nutrient deficiency showed comparable effects on stromal and cytosolic intermediates. Whole leaf ATP to ADP ratios were dependent on the growth regime, but did not much change with leaf age. The assimilatory force increased in all leaves suffering from mineral deficiency; the assimilatory force was low when photosynthesis was high and vice versa. Sugars accumulated although enzyme activities were decreased under deficiency. The results show that growth of P- and S-starved plants is not limited by photosynthetic reactions.  相似文献   

9.
We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant). When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production. The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars ( Caspar et al. 1986 ; W. Schulze et al. 1991 ). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency. In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.  相似文献   

10.
Wild‐type and ACC‐oxidase antisense tomato plants ( Lycopersicon esculentum Mill. cv. Ailsa Craig and pTOM13) were grown in environment‐controlled rooms for 21 days under photoperiods of 8, 16 or 23.5 h at an irradiance of 300 µmol m−2 s−1. Photosynthetic pigments, photosynthesis, soluble carbohydrates, starch and ethylene were measured on the last fully expanded leaf. Increasing the photoperiod from 8 to 16 h stimulated all measured growth parameters in both cultivars. However, when the photoperiod was increased to 23.5 h, foliar yellowing and deformation were observed in the wild‐type Ailsa Craig whereas no change was observed in pTOM13. It was not possible to relate these foliar changes in Ailsa Craig to destruction of the photosynthetic apparatus by excess carbohydrate levels in the leaves. Because pTOM13 was antisense to ACC‐oxidase. it is proposed that yellowing and deformation in leaves of wild‐type tomato plants grown under long photoperiods may be caused by stress ethylene induced by a long photoperiod.  相似文献   

11.
Chimeric genes consisting of the coding sequence of the yeast invertase gene suc 2 and different N-terminal portions of the potato-derived vacuolar protein proteinase inhibitor II fused to the 35S CaMV promoter and the poly-A site of the octopine synthase gene were transferred into tobacco and Arabidopsis thaliana plants using Agrobacterium based systems. Regenerated transgenic plants display a 50- to 500-fold higher invertase activity compared to non-transformed control plants. This invertase is N-glycosylated and efficiently secreted from the plant cell leading to its apoplastic location. Whereas expression of the invertase does not lead to drastic changes in transgenic Arabidopsis thaliana plants, transgenic tobacco plants show dramatic changes with respect to development and phenotype. Expression of the invertase leads to stunted growth due to reduction of internodal distances, to development of bleached and/or necrotic regions in older leaves and to suppressed root formation. In mature leaves, high levels of soluble sugars and starch accumulate. These carbohydrates do not show a diurnal turnover. The accumulation of carbohydrate is accompanied by an inhibition of photosynthesis, and in tobacco, by an increase in the rate of respiration. Measurements in bleached versus green areas of the same leaf show that the bleached section contains high levels of carbohydrates and has lower photosynthesis and higher respiration than green sections. It is concluded that expression of invertase in the cell wall interrupts export and leads to an accumulation of carbohydrates and inhibition of photosynthesis.  相似文献   

12.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

13.
White clover ramets were grown at various carbon dioxide concentrations(200, 350 and 1000 µl 1–1), defoliated and regrownat the same concentrations. Morphological characteristics, dryweights and non-structural carbohydrate contents of plant organs,diurnal variation of sugar and starch content of leaves, translocationof assimilates and photosynthesis were determined. Carbon dioxide concentration influenced the dry weights, butnot the number and size of the plant organs. However, defoliationof plants at low carbon dioxide concentration resulted in decreasedleaf size and stolon length. Carbon dioxide concentration influencedthe content and diurnal variation of starch and sugar in theleaves. Starch was accumulated at medium carbon dioxide concentrationand sugar at a higher concentration when the storage capacityfor starch seemed to be exceeded. Starch was preferentiallyaccumulated in the first and sugar in the second half of thelight period. Translocation was decreased during the periodsof accumulation. Sugar accumulation in the leaves seemed tobe a consequence of the imbalance between sink and source, whereasstarch accumulation seemed to follow an in-built diurnal pattern.Accumulation of both starch and sugar during the photoperiodwas followed by degradation and export during the dark period.Decreased dark export occurred at low carbon dioxide concentrationwhen neither starch nor sugar was accumulated during the photoperiod. Carbon dioxide, white clover, Trifolium repens L., growth, carbohydrates, starch, sugar, translocation, photosynthesis  相似文献   

14.
Continuous measurements of CO2-exchange were separately carried out on tops and roots of small swards of Lolium multiflorum grown in nutrient solution in growth chamber during 3–4 weeks. From these measurements, a daily carbon balance and accumulated dry matter could be established. The data were used to distinguish between two components of respiration, one proportional to growth or photosynthesis (growth respiration), the other proportional to plant dry weight (maintenance respiration). The separation of respiration in the two components was made by multiple regression analyses with daily photosynthesis or growth rate and accumulated dry matter as the independent variables. To ensure independency between the independent variables during the growth period, photosynthesis was varied by application of alternate three-day periods of high and low irradiance. From the two regression coefficients, the efficiency of converting assimilates into constructive growth (YG) and the maintenance coefficient (M) could be derived. Three experiments with varying length of photoperiod and dark period were carried out. The analyses were carried out for whole-plant respiration, respiration of tops and respiration of roots separately. Growth respiration for whole plants as well as for tops and for roots was lower — and hence the efficiencies higher — the longer the photoperiods were. Growth respiration and maintenance respiration were higher for roots than for tops. The high rate of root respiration may originate from release of HCO3? in exchange for NO3?. The parameters found can be utilized quantitatively in computer models of crop photosynthesis and respiration.  相似文献   

15.
When arrival of shoot supplied carbohydrate to the nodulated root system of soybean was interrupted by stem girdling, stem chilling, or leaf removal, nodule carbohydrate pools were utilized, and a marked decline in the rates of CO2 and H2 evolution was observed within approximately 30 minutes of treatment. Nodule excision studies demonstrated that the decline in nodulated root respiration was associated with nodule rather than root metabolism, since within 3.5 hours of treatment, nodules respired at less than 10% of the initial rates. Apparently, a continuous supply of carbohydrate from the shoot is required to support nodule, but not root, function. Depletion of nodular carbohydrate pools was sufficient to account for the (diminishing) nodule respiration of girdled plants. Of starch and soluble sugar pools within the whole plant, only leaf starch exhibited a diurnal variation which was sufficient to account for the respiratory carbon loss of nodules over an 8 hour night. Under 16 hour nights, or in continuous dark, first the leaf starch pools were depleted, and then nodule starch reserves declined concomitant with a decrease in the rates of CO2 and H2 evolution from the nodules. Nodule soluble sugar levels were maintained in dark treated plants but declined in girdled plants. The depletion of starch in root nodules is an indicator of carbohydrate limitation of nodule function.  相似文献   

16.
To determine how increased atmospheric CO2 will affect the physiology of coppiced plants, sprouts originating from two hybrid poplar clones ( Populus trichocarpa × P. deltoides - Beaupre and P. deltoides × P. nigra - Robusta) were grown in open-top chambers containing ambient or elevated (ambient + 360 μmol mol−1) CO2 concentration. The effects of elevated CO2 concentration on leaf photosynthesis, stomatal conductance, dark respiration, carbohydrate concentration and nitrogen concentration were measured. Furthermore, dark respiration of leaves was partitioned into growth and maintenance components by regressing specific respiration rate vs specific growth rate. Sprouts of both clones exposed to CO2 enrichment showed no indication of photosynthetic down-regulation. During reciprocal gas exchange measurements, CO2 enrichment significantly increased photosynthesis of all sprouts by approximately 60% ( P < 0.01) on both an early and late season sampling date, decreased stomatal conductance of all sprouts by 10% ( P < 0.04) on the early sampling date and nonsignificantly decreased dark respiration by an average of 11%. Growth under elevated CO2 had no consistent effect on foliar sugar concentration but significantly increased foliar starch by 80%. Respiration rate was highly correlated with both specific growth rate and percent nitrogen. Long-term CO2 enrichment did not significantly affect the maintenance respiration coefficient or the growth respiration coefficient. Carbon dioxide enrichment affected the physiology of the sprouts the same way it affected these plants before they were coppiced.  相似文献   

17.
Plant growth, photosynthesis and leaf constituents were examined in the wild-type (WT) and mutant nar1 of barley (Hordeum vulgare L. cv. Steptoe) that contains a defective structural gene encoding NADH-dependent nitrate reductase (NADH-NAR). In controlled environment experiments, total biomass, rates of photosynthesis, stomatal conductance, intercellular CO(2) concentrations and foliar non-structural carbohydrate levels were unchanged or differed slightly in the mutant compared with the WT. Both genotypes displayed accelerated plant growth rates when the CO(2) partial pressure was increased from 36 to 98 Pa. Total NADH-NAR activity was 90% lower in the mutant than in the WT, and this was further decreased by CO(2) enrichment in both genotypes. Inorganic nitrate was greater in the mutant than in the WT, whereas in situ nitrate assimilation by excised leaves was two-fold greater for the WT than for the mutant. Foliar ammonia was 50% lower in the mutant than in the WT under ambient CO(2). Ammonia levels in the WT were decreased by about one-half by CO(2) enrichment, whereas ammonia was unaffected by elevated CO(2) in mutant leaves. Total soluble amino acid concentrations in WT and mutant plants grown in the ambient CO(2) treatment were 30.1 and 28.4 micromol g(-1) FW, respectively, when measured at the onset of the light period. Seven of the twelve individual amino acids reported here increased during the first 12 h of light in the ambient CO(2) treatment, leading to a doubling of total soluble amino acids in the WT. The most striking effect of the mutation was to eliminate increases of glutamine, aspartate and alanine during the latter half of the photoperiod in the ambient CO(2) treatment. Growth in elevated CO(2) decreased levels of total soluble amino acids on a diurnal basis in the WT but not in mutant barley leaves. The above results indicated that a defect in NADH-NAR primarily affected nitrogenous leaf constituents in barley. Also, we did not observe synergistic effects of CO(2) enrichment and decreased foliar NADH-NAR activity on most N-containing compounds.  相似文献   

18.
In the Arabidopsis mutant sdd1-1, a point mutation in a single gene (SDD1) causes specific alterations in stomatal density and distribution. In comparison to the wild type (C24), abaxial surfaces of sdd1-1 rosette leaves have about 2.5-fold higher stomatal densities. This mutant was used to study the consequence of stomatal density on photosynthesis under various light regimes. The increased stomatal density in the mutant had no significant influence on the leaf CO(2) assimilation rate (A) under constant light conditions. Mutant and wild-type plants contained similar amounts of carbohydrates under these conditions. However, exposure of plants to increasing photon flux densities resulted in differences in gas exchange and the carbohydrate metabolism of the wild type and mutant. Increased stomatal densities in sdd1-1 enabled low-light-adapted plants to have 30% higher CO(2) assimilation rates compared to the wild type when exposed to high light intensities. After 2 d under high light conditions leaves of sdd1-1 accumulated 30% higher levels of starch and hexoses than wild-type plants.  相似文献   

19.
The Pattern of Respiration Rate in the Vegetative Barley Plant   总被引:3,自引:0,他引:3  
FARRAR  J. F. 《Annals of botany》1980,46(1):71-76
In two experiments with young barley plants, respiration rate,carbohydrate content and growth rate of the whole plant weremeasured. When 18-day-old plants were darkened the rate of respirationand the levels of soluble carbohydrate fell in parallel overthe following 30 h. When the dark respiration rate of plantswas followed from 7 to 24 days respiration rate and solublecarbohydrate levels did not change together, nor did the respirationrate (R) follow the empirical relationship with photosynthesis(P) and d. wt (W) R = aW + bP, suggested by McCree. Hordeum distichum L. (Lam), barley, respiration, carbohydrate content  相似文献   

20.
The role of the mature leaf in supplying carbon for growth inother parts of the plant was examined using a steady-rate 14CO2labelling technique. The pattern of events occurring in theleaf during one complete 24 h cycle was compared in plants grownin, and adapted to long and short photoperiods. The rates ofleaf photosynthesis, night respiration and daytime loss of carbonfrom the growing regions of the plant Were similar in long orshort photoperiods. As a percentage of the total carbon fixedduring the photoperiod, total respiration was c. 50% for shortday plants but only 25% for long day plants. Thirty to forty per cent of the carbon fixed during the photoperiodwas retained in the leaf for export during darkness—therest was exported immediately. In leaves of short day plantssucrose and starch were the main form of the stored carbon.By the end of the dark period these compounds had been almostcompletely depleted. In leaves of long day plants there weremuch larger basal levels of sucrose and starch, upon which thediurnal variations were superimposed. These leaves also accumulatedfructosans. The delay in starch remobilization previously foundin leaves of short day plants was also evident in leaves oflong day plants even though large concentrations of sucroseand fructosans were present This suggests the presence of distinctpools of sucrose in the leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号