首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of salt concentration gradient (inside to outside) on the lipid peroxidation of porcine intestinal brush-border membrane vesicles have been studied and several interesting features of the peroxidation have been elucidated. The addition of dithiothreitol and Fe2+ is far more effective in induction of the lipid peroxidation than any of the other metal ion species tested (Fe3+, Cu2+, Ni2+, Zn2+ and Cr3+). The peroxidation rate of the membrane vesicles induced by dithiothreitol plus Fe2+ was sensitive for the incubation temperature and was increased with increase of the temperature. Imposition of an inward salt concentration gradient on the membrane vesicles preloaded with 300 mM mannitol by addition of 100 mM chloride of K+, Na+, Li+, Rb+, NH4+ or choline to medium produces a very large reduction of the lipid peroxidation induced by dithiothreitol plus Fe2+. The membrane peroxidation is depressed more with the mannitol (300 mM)-preloaded vesicles than with the K2SO4 (100 mM)-preloaded vesicles when they are incubated in medium containing 20-100 mM of K2SO4. Addition of membrane-permeant anions such as SCN- and I-, but not addition of NO3-, to incubation medium has been found to decrease markedly the lipid peroxidation of the mannitol-preloaded vesicles. From these results it is suggested that the lipid peroxidation of the brush-border membranes by addition of dithiothreitol plus Fe2+ is sensitively changed with change in ionic strength.  相似文献   

2.
Porphyromonas gingivalis, one of the etiological agents of periodontitis, can be killed by red light in the presence of toluidine blue. The purpose of this study was to determine whether this light-induced killing was accompanied by changes in the fluidity of the organism's cytoplasmic membrane. A suspension of the organism was exposed to red light in the presence of toluidine blue, and the membrane fluidity was monitored spectrofluorimetrically by using the membrane probe trimethylammonium diphenyl hexatriene. The fluidity of the organism's cytoplasmic membrane was found to decrease significantly during lethal photosensitization, and this was accompanied by membrane condensation and vacuolation of the cells. Although changes in membrane fluidity are often attributable to lipid peroxidation, malonaldehyde (a product of lipid peroxidation) was not detectable. The disruption of membrane functions associated with a decreased membrane fluidity may contribute to the bactericidal effect of light-activated toluidine blue. Received: 12 October 2001 / Accepted: 7 December 2001  相似文献   

3.
The effect of peroxidation on 5'-nucleotidase activity as well as on membrane microviscosity has been investigated in liver plasma membranes from Wistar rats. The peroxidation was performed with 100 microM H2O2 and 200 microM FeSO4 and/or with 5 mM t-butylhydroperoxide. Treatment of the membranes with these oxidizing agents resulted in an elevation of the transition temperatures of the polarization of the lipid fluorescent probes 1,6 diphenyl-1,3,5 hexatriene (DPH), 3-p-(6-phenyl) 1,3,5 hexatriene phenylpropionic acid (PA-DPH) as well as of the fluorescent thiol reagent N-(1-pyrene) maleimide (1-PM). The peroxidation resulted in a decrease of the activity of 5'nucleotidase. Our data support that the increase of membrane microviscosity of the lipid domain regulates the activity of 5'-nucleotidase.  相似文献   

4.
Thiol oxidation by diphenyl ditelluride is a favorable reaction and may be responsible for alteration in regulatory or signaling pathways. We have measured rate constants for reactions of diphenyl ditelluride with cysteine, dimercaptosuccinic acid, glutathione and dithiothreitol in phosphate buffer. The relative reactivities of the different thiols with diphenyl ditelluride were independent of the pKa of the thiol group, such that at pH 7.4, cysteine and dithiothreitol were the most reactive and low reactivity was observed with glutathione and dimercaptosuccinic acid. The reactivity of diphenyl ditelluride was not modified by change in pH. Rate of oxidation increased with increasing pH for all thiols except dimercaptosuccinic acid, where the rate of oxidation was faster at low pH. The lipid peroxidation product malonaldehyde (MDA) was measured in rat brain homogenate and phospholipids extract from egg yolk after incubation in phosphate buffer at various pHs ranging from 7.4 to 5.4. TBARS production increased when homogenates were incubated in the pH (5.4-6.8) medium both in the absence and presence of Fe(II). These data indicate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing pH. The iron mobilization may come from reserves where it is weakly bound. Diphenyl ditelluride significantly protected TBARS production at all studied pH values in a concentration dependent manner in brain homogenate. This study provides in vitro evidence for acidosis induced oxidative stress and anti-oxidant action of diphenyl ditelluride.  相似文献   

5.
As an extension of our previous work we not only evaluated the relationship between acidosis and lipid peroxidation in rat's kidney homogenate, but also determined for the first time the potential anti-oxidant activity of diphenyl diselenide, diphenyl ditelluride and ebselen at a range of pH values (7.4–5.4). Because of the pH dependency of iron redox cycling, pH and iron need to be well controlled and for the reason we tested a number of pH values (from 7.4 to 5.4) to get a closer idea about the role of iron under various pathological conditions. Acidosis increased rate of lipid peroxidation in the absence Fe (II) in kidney homogenates especially at pH 5.4. This higher extent of lipid peroxidation can be explained by; the mobilized iron which may come from reserves where it is weakly bound. Addition of iron (Fe) chelator desferoxamine (DFO) to reaction medium completely inhibited the peroxidation processes at all studied pH values including acidic values (5.8–5.4). In the presence of Fe (II) acidosis also enhanced detrimental effect of Fe (II) especially at pH (6.4–5.4). Diphenyl diselenide significantly protected lipid peroxidation at all studied pH values, while ebselen offered only a small statistically non-significant protection. The highest anti-oxidant potency was observed for diphenyl ditelluride. These differences in potencies were explained by the mode of action of these compounds using their catalytic anti-oxidant cycles. However, changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compounds. This study provides evidence for acidosis catalyzed oxidative stress in kidney homogenate and for the first time anti-oxidant potential of diphenyl diselenide and diphenyl ditelluride not only at physiological pH but also at a range of acidic values.  相似文献   

6.
In experiments on Ehrlich ascites tumor cells it was shown that lipid peroxidation induced by gamma-rays and Fe2+ ions was accompanied by a decrease in the endogenous SH-group content at early times after exposure (during 3-hour incubation). It was also established that no significant changes occurred in the oxygen uptake by Ehrlich ascites tumor cells depending on radiation dose of Fe2+ ion concentration. If cells were pre-kept under hypotonic conditions an additional decrease in cell respiration and SH-group content and activation of lipid peroxidation was noted.  相似文献   

7.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

8.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

9.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

10.
The incubation of linoleic acid with cells causes profound effects on membrane associated phenomenon. Using the fluorescent probe diphenyl hexatriene (DPH) to monitor lipid changes in the microenvironment of the cell surface, we find that linoleic acid reduces the polarization values (P) in mouse lymphocytes and BHK cells. Measurements on lipids extracted from the cells grown in linoleic acid produce similar results. We also find in the mouse lymphocyte that capping of Ig is inhibited and con A stimulated mitogenesis is unaffected. In contrast to the latter effect, LPS and PHA stimulated mitogenesis is inhibited and in the rat lymph node, con A stimulated mitogenesis, greatly enhanced. We also show that linoleic acid alters the binding of antibodies to the cell surface of EL-4 lymphoma cells. These observations suggest that linoleic acid alters cellular function by interfering with protein/lipid interactions within the surface membrane.  相似文献   

11.
The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP.  相似文献   

12.
Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.  相似文献   

13.
V T Maddaiah 《FASEB journal》1990,4(5):1513-1518
The temporal relationship of changes in state 3 respiration, lipid peroxidation, and glutathione (GSH) content was investigated in liver mitochondria of hypophysectomized rats after an injection of 3,3',5-triiodo-L-thyronine (T3). Lipid peroxidation induced by ADP/Fe3+/NADPH was determined by the amount of malondialdehyde formed. Hypophysectomy decreased respiration and lipid peroxidation (from 19.88 +/- 3.04 to 14.19 +/- 1.14 nmol malondialdehyde.mg protein-1.10 min-1) but increased GSH content (from 7.06 +/- 2.08 to 12.46 +/- 3.58 nmol/mg protein). Daily injections of a low dose (5 micrograms/100 g) of T3 for 7 days restored the parameters. Time course (up to 96 h) of these changes was followed after one injection of a moderate (100 micrograms/100 g) and high (1000 micrograms/100 g) dose of the hormone. Respiration showed a significant increase at 24 h and declined slightly at 96 h. There was a slow loss of respiratory control ratio after 24 h. Lipid peroxidation remained unchanged at 24 h and showed a gradual increase, becoming significantly higher at 72-96 h depending on the hormone dosage. Changes in GSH content followed a time course similar to that of lipid peroxidation except that it showed a decrease instead of an increase. There was a high degree of inverse linear correlation between lipid peroxidation and GSH (correlation coefficient = 0.95). Because GSH is required for detoxification of hydroperoxides generated by the respiratory chain, it is suggested that lipid peroxidation may play a major role in the modulation of intramitochondrial GSH.  相似文献   

14.
The objective of this study was to compare the effect of alpha-tocopherol and its ester, alpha tocopherol succinate, on lipid peroxidation and motility of equine spermatozoa. In experiment one, spermatozoa were incubated with dl-alpha-tocopherol (5, 25, 100 or 500 microM), DL-alpha tocopherol succinate (5, 25, 100 or 500 microM) or vehicle (0.5% ethanol) at 38 degrees C, and sperm motility was determined at 30, 60 and 120 min. In experiment two, spermatozoa loaded with the lipophilic probe, C11BODIPY(581/591), were incubated with dl-alpha-tocopherol (50 and 100 microM), DL-alpha-tocopherol succinate (50 and 100 microM) or ethanol (0.5%) and with the promoters cumene hydroperoxide, Fe2SO4, and ascorbate at 38 degrees C in 5% CO2. Lipid peroxidation was determined by changes in fluorescence of C11BODIPY(581/591), and motility was determined by CASA at 0, 15, 30 and 60 min. In experiment three, spermatozoa loaded with C11BODIPY(581/591) were incubated with dl-alpha-tocopherol (5, 25, 100 or 500 microM), DL-alpha-tocopherol succinate (5, 25, 100 or 500 microM) or ethanol (0.5%) at 38 degrees C and then submitted to a 4-hour incubation at room temperature. Motility and lipid peroxidation were determined at 1 and 4 h. In experiment four, the effect of DL alpha tocopherol (5, 25 or 500 microM), DL-alpha-tocopherol succinate (5, 25 or 500 microM) or ethanol (0.5%) on lipid peroxidation and motility were evaluated during storage at 5 degrees C in a skim-milk based extender. Although dl-alpha-tocopherol succinate appeared more effective than DL-alpha-tocopherol in preventing lipid peroxidation during short-term incubations, the succinate ester suppressed sperm motility compared to dl-alpha-tocopherol alone.  相似文献   

15.
1. The effect of different doses of six polypeptide hormones on pyrene diffusion in rat testes and liver plasma membranes was tested. Pyrene mobility was reduced in membranes possessing respective receptors. 2. An incubation time of 15 min of testes plasma membranes with 10(-5) M lutropin (LH) reduced pyrene and diphenyl hexatriene mobilities by 10-20%. 3. The addition of 10(-5) M LH to a suspension of intact L-cells from rats at different ages decreased the diffusion of membrane fluorescently labelled lipids and proteins by ca 60%. Diffusion was measured by fluorescence recovery after photobleaching. 4. Observed LH effects were independent of development and ageing.  相似文献   

16.
Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation   总被引:5,自引:0,他引:5  
We have previously observed that both Fe(II) and Fe(III) are required for lipid peroxidation to occur, with maximal rates of lipid peroxidation observed when the ratio of Fe(II) to Fe(III) is approximately one (J. R. Bucher et al. (1983) Biochem. Biophys. Res. Commun. 111, 777-784; G. Minotti and S. D. Aust (1987) J. Biol. Chem. 262, 1098-1104). Consistent with the requirement for both Fe(II) and Fe(III), ascorbate, by reducing Fe(III) to Fe(II), stimulated iron-catalyzed lipid peroxidation but when the ascorbate concentration was sufficient to reduce all of the Fe(III) to Fe(II), ascorbate inhibited lipid peroxidation. The rates of lipid peroxidation were unaffected by the addition of catalase, superoxide dismutase, or hydroxyl radical scavengers. Exogenously added H2O2 also either stimulated or inhibited ascorbate-dependent, iron-catalyzed lipid peroxidation apparently by altering the ratio of Fe(II) to Fe(III). Thus, it appears that the prooxidant effect of ascorbate is related to the ability of ascorbate to promote the formation of a proposed Fe(II):Fe(III) complex and not due to oxygen radical production. The antioxidant effect of ascorbate on iron-catalyzed lipid peroxidation may be due to complete reduction of iron.  相似文献   

17.
Nonenzymatic lipid peroxidation in thymus cell plasma membranes was studied. The composition of lipid and protein components, intensity of fluorescence of the membrane probes (1-anilinonaphthalene-8-sulfonate, 4-dimethylaminochalcon, eosin, pyronin and rhodamine), fluorescence polarization of tryptophan residues of membrane proteins and quenching by acrylamide of intrinsic fluorescence of proteins were determined. Induction of lipid peroxidation by the Fe(2+)-ascorbate system caused changes in the composition and structure of lipids. This was paralleled with changes in the structural-dynamic organization of membrane proteins, transition of some peripheral proteins to the water phase and increased solubilization of integral proteins by Triton X-100.  相似文献   

18.
The capacity of human sperm fertilization is principally dependent on sperm motility and membrane integrity. Oxygen-derived free radicals, such as superoxide anion, are known to impair sperm motility and membrane integrity by inducing membrane lipid peroxidation (LPO). Nitric oxide (NO), a biologically active free radical, has recently been shown to inactivate superoxide and increase intracellular guanosine-3', 5'-cyclic monophosphate (cGMP). The aim of this study is to investigate the effects of NO on human sperm motility, viability, lipid peroxidation and cGMP in fertile and asthenozoospermic infertile individuals in vitro. Semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Washed spermatozoa were incubated at 37°C in Ham's F-10 medium with 0, 25, 50, 100, 200, or 400nM sodium nitroprusside (SNP, Na2 [Fe(CN) 5NO] · 2H2O), a nitric oxide releaser. Samples were analyzed for viability, determined by eosin-Y dye exclusion method at 0, 1, 2, 3, 5 and 6 h of incubation; motility, determined by the trans-membrane migration method within 2 h of incubation; LPO determined by malondi-aldehyde (MDA) -thiobarbituric acid method at 3 h of incubation; and the intracellular cGMP, determined by 125I-cGMP radioimmunoassay at 3 h of incubation. The results showed: in both fertile and infertile samples, viability, trans-membrane migration ratio and the levels of intracellular cGMP in 25-100nM SNP-treated spermatozoa were significantly higher than those in control groups, while MDA contents in treated groups were significantly lower than those in controls. However, when concentrations of SNP increased to 200-400nM, the opposite effects were exhibited. The effects of SNP on these processes were biphasic within 25-400nM. The most effective concentration was 100nM. These data suggested that NO is beneficial to sperm viability and motility in both fertile and infertile individuals, and that reduction of lipid peroxidative damage to sperm membranes and increase of intracellular cGMP may be involved in these benefits.  相似文献   

19.
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios.  相似文献   

20.
1. The effects of some anesthetics and detergents on the Fe2+/ascorbate-stimulated non-enzymatic lipid peroxidation potential and on the NADPH-dependent enzymatic lipid peroxidation capacity were characterized in mouse heart homogenates. 2. Chlorpromazine turned out to be the most efficient inhibitor, causing a 50% inhibition at a concentration of 0.03 mM in the non-enzymatic assay, and at a concentration of 0.02 mM in the enzymatic assay. 3. Tetracaine was about a 10-times weaker inhibitor with IC50-values of 0.25 mM. High concentration of dibucaine (1 mM) exerted a 60% inhibition in the non-enzymatic assay, but lidocaine and procaine had no prominent effect with the concentrations used. 4. In the non-enzymatic, Fe(2+)-stimulated system, a 50% inhibition was obtained by using SDS, Triton X-100, and deoxycholic acid at concentrations of 0.004, 0.03, and 0.15%, respectively. 5. In the NADPH-dependent enzymatic lipid peroxidation system, corresponding concentrations were 0.02, 0.04 and 0.1%. Deoxycholate and Triton X-100 even stimulated (10-20%) the enzymatic lipid peroxidation at the lowest concentrations (0.005-0.01%). Saponin was the least effective of these detergents. 6. It is suggested that anesthetics and detergents induce structural rearrangements in the myocardiac membranes which result in the unavailability of phospholipid substrates to lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号