首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progesterone-induced maturation of Xenopus oocytes is a well known example of nongenomic signaling by steroids; however, little is known about the early signaling events involved in this process. Previous work has suggested that G proteins and G protein-coupled receptors may be involved in progesterone-mediated oocyte maturation as well as in other nongenomic steroid-induced signaling events. To investigate the role of G proteins in nongenomic signaling by progesterone, the effects of modulating Galpha and Gbetagamma levels in Xenopus oocytes on progesterone-induced signaling and maturation were examined. Our results demonstrate that Gbetagamma subunits, rather than Galpha, are the principal mediators of progesterone action in this system. We show that overexpression of Gbetagamma inhibits both progesterone-induced maturation and activation of the MAPK pathway, whereas sequestration of endogenous Gbetagamma subunits enhances progesterone-mediated signaling and maturation. These data are consistent with a model whereby endogenous free Xenopus Gbetagamma subunits constitutively inhibit oocyte maturation. Progesterone may induce maturation by antagonizing this inhibition and therefore allowing cell cycle progression to occur. These studies offer new insight into the early signaling events mediated by progesterone and may be useful in characterizing and identifying the membrane progesterone receptor in oocytes.  相似文献   

2.
A number of reports have identified phosphatidylinositol 3-kinase as a downstream effector of Ras in various cellular settings, in contrast to others supporting the notion that phosphatidylinositol 3-kinase acts upstream of Ras. Here, we used Xenopus oocytes, a model of Ras-mediated cell cycle progression (G2/M transition) to analyze the contribution of phosphatidylinositol 3-kinase to insulin/Ras-dependent signaling pathways leading to germinal vesicle breakdown and to ascertain whether phosphatidylinositol 3-kinase acts upstream or downstream of Ras in those signaling pathways. We analyzed the process of meiotic maturation induced by progesterone, insulin or micro-injected oncogenic Ras (Lys12) proteins in the presence and absence of specific inhibitors of phosphatidylinositol 3-kinase activity. As expected, the progesterone-induced maturation was independent of phosphatidylinositol 3-kinase since similar rates of germinal vesicle breakdown were produced by the hormone in the presence and absence of wortmannin and LY294002. In contrast, insulin-induced germinal vesicle breakdown was completely blocked by pre-incubation with the inhibitors prior to insulin treatment. Interestingly, similar rates of germinal vesicle breakdown were obtained in Ras (Lys12)-injected oocytes, independently of whether or not they had been pre-treated with phosphatidylinositol 3-kinase inhibitors. The effect of wortmannin or LY294002 on MAPK and Akt activation by progesterone, insulin or Ras was also analyzed. Whereas insulin activated those kinases in a phosphatidylinositol 3-kinase-dependent manner, progesterone and Ras were able to activate those kinases in the absence of phosphatidylinositol 3-kinase activity. Since Ras is a necessary and sufficient downstream component of insulin signaling pathways leading to germinal vesicle breakdown, these observations demonstrate that phosphatidylinositol 3-kinase is not a downstream effector of Ras in insulin/Ras-dependent signaling pathways leading to entry into the M phase in Xenopus oocytes.  相似文献   

3.
In somatic cells, phosphatidylinositol 3-kinase (PI3 kinase) is a critical intermediary in growth factor-induced mitogenesis. We have examined the role of this enzyme in meiotic maturation of Xenopus laevis oocytes. PI3 kinase activity was present in immunoprecipitates of the p85 subunit of PI3 kinase from immature oocytes and markedly increased following progesterone stimulation. Injection of bacterially expressed protein corresponding to the C-terminal SH2 domain of p85 (SH2-C) inhibited progesterone-induced PI3 kinase activation and meiotic maturation. Injection of protein corresponding to the N-terminal SH2 domain or the SH3 domain of p85 did not inhibit PI3 kinase activation or maturation. SH2-C did not inhibit oocyte maturation induced by c-mos RNA injection. In addition, radiolabelled SH2-C was used to probe oocyte lysates, revealing that a novel 200-kDa protein bound to SH2-C. This protein may be an important mediator of progesterone-induced lipid metabolism in oocytes.  相似文献   

4.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

5.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

6.
7.
Stimulation of bovine polymorphonuclear leukocytes (PMN) with serum-opsonized zymosan (sOZ) induced the activation of p38 mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3-K) and sOZ-induced O(2)(-) production was significantly attenuated by their inhibitors (SB203580 for p38 MAPK, GF109203X for PKC and wortmannin for PI3-K). They caused significant attenuation of sOZ-induced phosphorylation of p47phox as well. Flow cytometric analysis, however, revealed that SB203580 and wortmannin attenuated phagocytosis, but GF109203X facilitated it. The results suggest that p38 MAPK and PI3-K participated in both signaling pathways of NADPH oxidase activation (O(2)(-) production) and phagocytosis, and PKC participated in the signaling pathway of NADPH oxidase activation alone.  相似文献   

8.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

9.
The G protein-coupled receptor encoded by Kaposi's sarcoma-associated herpesvirus, also referred to as ORF74, has been shown to stimulate oncogenic and angiogenic signaling pathways in a constitutively active manner. The biochemical routes linking ORF74 to these signaling pathways are poorly defined. In this study, we show that ORF74 constitutively activates p44/p42 mitogen-activated protein kinase (MAPK) and Akt via G(i)- and phospholipase C (PLC)-mediated signaling pathways. Activation of Akt by ORF74 appears to be phosphatidylinositol 3-kinase (PI3-K) dependent but, interestingly, is also mediated by activation of protein kinase C (PKC) and p44/p42 MAPK. ORF74 may signal to Akt via p44/p42 MAPK, which can be activated by G(i), through activation of PI3-K or through PKC via the PLC pathway. Signaling of ORF74 to these proliferative and antiapoptotic signaling pathways can be further modulated positively by growth-related oncogene (GROalpha/CXCL1) and negatively by human gamma interferon-inducible protein 10 (IP-10/CXCL10), thus acting as an agonist and an inverse agonist, respectively. Despite the ability of the cytomegalovirus-encoded chemokine receptor US28 to constitutively activate PLC, this receptor does not increase phosphorylation of p44/p42 MAPK or Akt in COS-7 cells. Hence, ORF74 appears to signal through a larger diversity of G proteins than US28, allowing it to couple to proliferative and antiapoptotic signaling pathways. ORF74 can therefore be envisioned as an attractive target for novel treatment of Kaposi's sarcoma.  相似文献   

10.
In most target cells, activation of the type 1 CRH receptor (CRH-R1) by CRH or urocortin (UCN I) leads to stimulation of the Gs-protein/adenylyl cyclase/protein kinase A cascade. Signal transduction of CRH-R1 also involves alternative pathways such as phosphorylation of ERK1/2 and p38 MAPK, two members of the MAPK family that mediate important pathophysiological responses. The intracellular pathways by which CRH-R1 activates these MAPK are only partially understood; here we characterized further signaling mechanisms and molecules involved in CRH-R1-mediated ERK1/2 and p38 MAPK activation. In human embryonic kidney 293 cells overexpressing recombinant CRH-R1alpha, UCN I induced ERK1/2 and p38 MAPK activation was dependent on signaling molecules involved in agonist-induced CRH-R1alpha trafficking and endocytosis. Furthermore, time course studies and use of selective inhibitors demonstrated that ERK1/2 activation occured within 5 min, was sustained for at least 60 min, and was dependent on both phosphatidylinositol 3-kinase (PI3-K)/Akt activation and epidermoid growth factor receptor transactivation involving matrix metelloproteinases. UCN I effect on p38 MAPK phosphorylation was more transient, returned to basal within 40 min and was dependent on epidermoid growth factor receptor transactivation, but not PI3-K/Akt activation. Overexpression of G(alpha-)transducin, showed that G(betagamma)-subunit activation is only partially required for ERK1/2 phosphorylation and does not play a role in p38 MAPK phosphorylation, whereas overexpression of a dominant-negative Ras (Ras N17) attenuated both ERK and p38 MAPK activation. In conclusion, a complex signaling network appears to mediate CRH-R1alpha-MAPK interactions; PI3-K might play a critical role in the regulation of CRH-R1alpha signaling selectivity and cellular responses.  相似文献   

11.
We have studied the role of p38 mitogen-activated protein kinases (MAPKs) in the meiotic maturation of Xenopus oocytes. Overexpression of a constitutively active mutant of the p38 activator MKK6 accelerates progesterone-induced maturation. Immunoprecipit ation experiments indicate that p38gamma/SAPK3 is the major p38 activated by MKK6 in the oocytes. We have cloned Xenopus p38gamma (Xp38gamma) and show that co-expression of active MKK6 with Xp38gamma induces oocyte maturation in the absence of progesterone. The maturation induced by Xp38gamma requires neither protein synthesis nor activation of the p42 MAPK-p90Rsk pathway, but it is blocked by cAMP-dependent protein kinase. A role for the endogenous Xp38gamma in progesterone-induced maturation is supported by the inhibitory effect of kinase-dead mutants of MKK6 and Xp38gamma. Furthermore, MKK6 can rescue the inhibition of oocyte maturation by anthrax lethal factor, a protease that inactivates MAPK kinases. We also show that Xp38gamma can activate the phosphatase XCdc25C, and we identified Ser205 of XCdc25C as a major phosphorylation site for Xp38gamma. Our results indicate that phosphorylation of XCdc25C by Xp38gamma/SAPK3 is important for the meiotic G(2)/M progression of Xenopus oocytes.  相似文献   

12.
An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.  相似文献   

13.
We have previously shown that P-selectin binding to Colo-320 human colon carcinoma cells induces specific activation of the alpha(5)beta(1) integrin with a concomitant increase of cell adhesion and spreading on fibronectin substrates in a phosphatidylinositol 3-kinase (PI3-K) and p38 MAPK-dependent manner. Here, we identified by affinity chromatography and characterized nucleolin as a P-selectin receptor on Colo-320 cells. Nucleolin mAb D3 significantly decreases the Colo-320 cell adhesion to immobilized P-selectin-IgG-Fc. Moreover, nucleolin becomes clustered at the external side of the plasma membrane of living, intact cells when bound to cross-linked P-selectin-IgG-Fc chimeric protein. We have also found P-selectin binding to Colo-320 cells induces tyrosine phosphorylation specifically of cell-surface nucleolin and formation of a signaling complex containing cell-surface nucleolin, PI3-K and p38 MAPK. Using siRNA approaches, we have found that both P-selectin binding to Colo-320 cells and formation of the P-selectin-mediated p38 MAPK/PI3-K signaling complex require nucleolin expression. These results show that nucleolin (or a nucleolin-like protein) is a signaling receptor for P-selectin on Colo-320 cells and suggest a mechanism for linkage of nucleolin to P-selectin-induced signal transduction pathways that regulate the adhesion and the spreading of Colo-320 on fibronectin substrates.  相似文献   

14.
15.
The mechanisms by which inorganic salts of the trace element vanadium mediate their insulinomimetic effects are not clearly understood and were investigated. We have shown previously that vanadium salts activate mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase activities (PI3-K) via a pathway that does not involve the insulin receptor (IR) tyrosine kinase function [Pandey, S. K., Anand-Srivastava, M. B., and Srivastava, A. K. (1998) Biochemistry 37, 7006-7014]. Herein, we have examined a possible role of PI3-K in the vanadyl sulfate (VS)-mediated increase in the level of ras-MAPK activation as well as the contribution of signaling components upstream to MAPK in this VS response. Treatment of IR-overexpressing cells with VS resulted in an increased level of tyrosine phosphorylation of p44(mapk) (ERK-1) and p42(mapk) (ERK-2) along with stimulation of MAPK, MAPK kinase (MEK), and C-raf-1 activities, and ras activation. Preincubation with wortmannin and LY294002, two structurally and mechanistically different inhibitors of PI3-K, blocked the VS-mediated increase in MAPK activity and phosphorylation of ERK-1 and ERK-2. Furthermore, wortmannin inhibited activation of ras, C-raf-1, and MEK in response to VS. The addition of a farnesyltransferase inhibitor, B581, to cells reduced the level of MAPK activation as well as ERK-1 and ERK-2 phosphorylation stimulated by VS. Finally, VS increased PI3-K activity in ras immunoprecipitates. A VS-mediated increase in p70(s6k) activity was also found to be inhibited by wortmannin. Taken together, these results demonstrate that the insulinomimetic effects of VS may be mediated, in part, by PI3-K-dependent stimulation of the ras-MAPK and p70(s6k) pathways.  相似文献   

16.
SIP (signaling inositol phosphatase) or SHIP (SH2-containing inositol phosphatase) is a recently identified SH2 domain-containing protein which has been implicated as an important signaling molecule. SIP/SHIP becomes tyrosine phosphorylated and binds the phosphotyrosine-binding domain of SHC in response to activation of hematopoietic cells. The signaling pathways and biological responses that may be regulated by SIP have not been demonstrated. SIP is a phosphatidylinositol- and inositol-polyphosphate 5-phosphatase with specificity in vitro for substrates phosphorylated at the 3' position. Phosphatidylinositol 3'-kinase (PI 3-kinase) is an enzyme which is involved in mitogenic signaling and whose phosphorylated lipid products are predicted to be substrates for SIP. We tested the hypothesis that SIP can modulate signaling by PI 3-kinase in vivo by injecting SIP cRNAs into Xenopus oocytes. SIP inhibited germinal vesicle breakdown (GVBD) induced by expression of a constitutively activated form of PI 3-kinase (p110*) and blocked GVBD induced by insulin. SIP had no effect on progesterone-induced GVBD. Catalytically inactive SIP had little effect on insulin- or PI 3-kinase-induced GVBD. Expression of SIP, but not catalytically inactive SIP, also blocked insulin-induced mitogen-activated protein kinase phosphorylation in oocytes. SIP specifically and markedly reduced the level of phosphatidylinositol (3,4,5) triphosphate [PtdIns(3,4,5)P3] generated in oocytes in response to insulin. These results demonstrate that a member of the phosphatidylinositol polyphosphate 5-phosphatase family can inhibit signaling in vivo. Further, our data suggest that the generation of PtdIns(3,4,5)P3 by PI 3-kinase is necessary for insulin-induced GVBD in Xenopus oocytes.  相似文献   

17.
18.
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR), which plays vital roles during embryogenesis. Activating FGFR mutations cause several craniosynostoses and dwarfism syndromes in humans. Here we show that the Xenopus homolog of mammalian FRS-2 (XFRS2) is essential for the induction of oocyte maturation by an XFGFR1 harboring an activating mutation (XFGFR1act). Using a dominant-negative form of kinase suppressor of Ras, we show the Mek activity is required for germinal vesicle breakdown (GVBD) induced by co-expression of XFGFR1act and XFRS2, but this activity is not required for progesterone-induced GVBD. Furthermore, Mek/MAPK activity is critical for the induction and/or maintenance of H1 kinase activity at metaphase of meiosis II in progesterone-treated oocytes. An activated XFGFR1 containing a mutation in the phospholipase Cgamma binding site (XFGFR1actY672F) displayed a reduced ability to induce cell-cycle progression in oocytes, suggesting phospholipase Cgamma may not be necessary but that it augments XFGFR signaling in this system. Oocytes co-expressing XFGFR1act and XFRS2 showed substantial H1 kinase activity, but this activity was blocked when the oocytes were treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Although phosphatidylinositol 3-kinase activity is essential for XFGFR1act/XFRS2-induced oocyte maturation, this activity is not required for maturation induced by progesterone. Finally, ectopic expression of Xspry2, a negative regulator of XFGFR signaling, greatly reduced MAPK activation and GVBD induced by the expression of either XFGFR1act plus XFRS2 or activated Ras (H-RasV12). In contrast, Xspry2 did not prevent GVBD induced by an activated form of Raf1, suggesting that Xspry2 exerts its inhibitory function upstream or parallel to Raf and downstream of Ras.  相似文献   

19.
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号