首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MOTIVATION: We present an extensive evaluation of different methods and criteria to detect remote homologs of a given protein sequence. We investigate two associated problems: first, to develop a sensitive searching method to identify possible candidates and, second, to assign a confidence to the putative candidates in order to select the best one. For searching methods where the score distributions are known, p-values are used as confidence measure with great success. For the cases where such theoretical backing is absent, we propose empirical approximations to p-values for searching procedures. RESULTS: As a baseline, we review the performances of different methods for detecting remote protein folds (sequence alignment and threading, with and without sequence profiles, global and local). The analysis is performed on a large representative set of protein structures. For fold recognition, we find that methods using sequence profiles generally perform better than methods using plain sequences, and that threading methods perform better than sequence alignment methods. In order to assess the quality of the predictions made, we establish and compare several confidence measures, including raw scores, z-scores, raw score gaps, z-score gaps, and different methods of p-value estimation. We work our way from the theoretically well backed local scores towards more explorative global and threading scores. The methods for assessing the statistical significance of predictions are compared using specificity--sensitivity plots. For local alignment techniques we find that p-value methods work best, albeit computationally cheaper methods such as those based on score gaps achieve similar performance. For global methods where no theory is available methods based on score gaps work best. By using the score gap functions as the measure of confidence we improve the more powerful fold recognition methods for which p-values are unavailable. AVAILABILITY: The benchmark set is available upon request.  相似文献   

3.
Taylor WR  Jonassen I 《Proteins》2004,56(2):222-234
A method (SPREK) was developed to evaluate the register of a sequence on a structure based on the matching of structural patterns against a library derived from the protein structure databank. The scores obtained were normalized against random background distributions derived from sequence shuffling and permutation methods. 'Random' structures were also used to evaluate the effectiveness of the method. These were generated by a simple random-walk and a more sophisticated structure prediction method that produced protein-like folds. For comparison with other methods, the performance of the method was assessed using collections of models including decoys and models from the CASP-5 exercise. The performance of SPREK on the decoy models was equivalent to (and sometimes better than) those obtained with more complex approaches. An exception was the two smallest proteins, for which SPREK did not perform well due to a lack of patterns. Using the best parameter combination from trials on decoy models, the CASP models of intermediate difficulty were evaluated by SPREK and the quality of the top scoring model was evaluated by its CASP ranking. Of the 14 targets in this class, half lie in the top 10% (out of around 140 models for each target). The two worst rankings resulted from the selection by our method of a well-packed model that was based on the wrong fold. Of the other poor rankings, one was the smallest protein and the others were the four largest (all over 250 residues).  相似文献   

4.
胡始昌  江弋  林琛  邹权 《生物信息学》2012,10(2):112-115
蛋白质折叠问题被列为"21世纪的生物物理学"的重要课题,他是分子生物学中心法则尚未解决的一个重大生物学问题,因此预测蛋白质折叠模式是一个复杂、困难、和有挑战性的工作。为了解决该问题,我们引入了分类器集成,本文所采用的是三种分类器(LMT、RandomForest、SMO)进行集成以及188维组合理化特征来对蛋白质类别进行预测。实验证明,该方法可以有效表征蛋白质折叠模式的特性,对蛋白质序列数据实现精确分类;交叉验证和独立测试均证明本文预测准确率超过70%,比前人工作提高近10个百分点。  相似文献   

5.
蛋白质折叠类型识别方法研究   总被引:1,自引:0,他引:1  
蛋白质折叠类型识别是一种分析蛋白质结构的重要方法.以序列相似性低于25%的822个全B类蛋白为研究对象,提取核心结构二级结构片段及片段问氢键作用信息为折叠类型特征参数,构建全B类蛋白74种折叠类型模板数据库.定义查询蛋白与折叠类型模板间二级结构匹配函数SS、氢键作用势函数BP及打分函数P,P值最小的模板所对应的折叠类型为查询蛋白的折叠类型.从SCOP1.69中随机抽取三组、每组50个全β类蛋白结构域进行预测,分辨精度分别为56%、56%和42%;对Ding等提供的检验集进行预测,总分辨精度为61.5%.结果和比对表明,此方法是一种有效的折叠类型识别方法.  相似文献   

6.
Development of novel statistical potentials for protein fold recognition   总被引:5,自引:0,他引:5  
The need to perform large-scale studies of protein fold recognition, structure prediction and protein-protein interactions has led to novel developments of residue-level minimal models of proteins. A minimum requirement for useful protein force-fields is that they be successful in the recognition of native conformations. The balance between the level of detail in describing the specific interactions within proteins and the accuracy obtained using minimal protein models is the focus of many current protein studies. Recent results suggest that the introduction of explicit orientation dependence in a coarse-grained, residue-level model improves the ability of inter-residue potentials to recognize the native state. New statistical and optimization computational algorithms can be used to obtain accurate residue-dependent potentials for use in protein fold recognition and, more importantly, structure prediction.  相似文献   

7.

Background  

Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network.  相似文献   

8.
FORTE: a profile-profile comparison tool for protein fold recognition   总被引:1,自引:0,他引:1  
We present FORTE, a profile-profile comparison tool for protein fold recognition. Users can submit a protein sequence to explore the possibilities of structural similarity existing in known structures. Results are reported via email in the form of pairwise alignments.  相似文献   

9.
Mirzaie M  Sadeghi M 《Proteins》2012,80(3):683-690
We have recently introduced a novel model for discriminating the correctly folded proteins from well-designed decoy structures using mechanical interatomic forces. In the model, we considered a protein as a collection of springs and the force imposed to each atom was calculated by using the relation between the potential energy and the force. A mean force potential function is obtained from statistical contact preferences within the known protein structures. In this article, the interatomic forces are calculated by numerical derivation of the potential function. For assessing the knowledge-based force function we consider an optimal structure and define a score function on the 3D structure of a protein. We compare the force imposed to each atom of a protein with the corresponding atom in the optimum structure. Afterwards we assign larger scores to those atoms with the lower forces. The total score is the sum of partial scores of atoms. The optimal structure is assumed to be the one with the highest score in the dataset. Finally, several decoy sets are applied in order to evaluate the performance of our model.  相似文献   

10.
11.
蛋白质折叠识别算法是蛋白质三维结构预测的重要方法之一,该方法在生物科学的许多方面得到卓有成效的应用。在过去的十年中,我们见证了一系列基于不同计算方式的蛋白质折叠识别方法。在这些计算方法中,机器学习和序列谱-序列谱比对是两种在蛋白质折叠中应用较为广泛和有效的方法。除了计算方法的进展外,不断增大的蛋白质结构数据库也是蛋白质折叠识别的预测精度不断提高的一个重要因素。在这篇文章中,我们将简要地回顾蛋白质折叠中的先进算法。另外,我们也将讨论一些可能可以应用于改进蛋白质折叠算法的策略。  相似文献   

12.
MOTIVATION: The Bayesian network approach is a framework which combines graphical representation and probability theory, which includes, as a special case, hidden Markov models. Hidden Markov models trained on amino acid sequence or secondary structure data alone have been shown to have potential for addressing the problem of protein fold and superfamily classification. RESULTS: This paper describes a novel implementation of a Bayesian network which simultaneously learns amino acid sequence, secondary structure and residue accessibility for proteins of known three-dimensional structure. An awareness of the errors inherent in predicted secondary structure may be incorporated into the model by means of a confusion matrix. Training and validation data have been derived for a number of protein superfamilies from the Structural Classification of Proteins (SCOP) database. Cross validation results using posterior probability classification demonstrate that the Bayesian network performs better in classifying proteins of known structural superfamily than a hidden Markov model trained on amino acid sequences alone.  相似文献   

13.
Protein design experiments have shown that the use of specific subsets of amino acids can produce foldable proteins. This prompts the question of whether there is a minimal amino acid alphabet which could be used to fold all proteins. In this work we make an analogy between sequence patterns which produce foldable sequences and those which make it possible to detect structural homologs by aligning sequences, and use it to suggest the possible size of such a reduced alphabet. We estimate that reduced alphabets containing 10-12 letters can be used to design foldable sequences for a large number of protein families. This estimate is based on the observation that there is little loss of the information necessary to pick out structural homologs in a clustered protein sequence database when a suitable reduction of the amino acid alphabet from 20 to 10 letters is made, but that this information is rapidly degraded when further reductions in the alphabet are made.  相似文献   

14.
15.
The wealth of protein sequence and structure data is greater than ever, thanks to the ongoing Genomics and Structural Genomics projects. The information available through such efforts needs to be analysed by new methods that combine both databases. One important result of genomic sequence analysis is the inference of functional homology among proteins. Until recently sequence similarity comparison was the only method for homologue inference. The new fold recognition approach reviewed in this paper enhances sequence comparison methods by including structural information in the process of protein comparison. This additional information often allows for the detection of similarities that cannot be found by methods that only use sequence information.  相似文献   

16.
MOTIVATION: Recognizing proteins that have similar tertiary structure is the key step of template-based protein structure prediction methods. Traditionally, a variety of alignment methods are used to identify similar folds, based on sequence similarity and sequence-structure compatibility. Although these methods are complementary, their integration has not been thoroughly exploited. Statistical machine learning methods provide tools for integrating multiple features, but so far these methods have been used primarily for protein and fold classification, rather than addressing the retrieval problem of fold recognition-finding a proper template for a given query protein. RESULTS: Here we present a two-stage machine learning, information retrieval, approach to fold recognition. First, we use alignment methods to derive pairwise similarity features for query-template protein pairs. We also use global profile-profile alignments in combination with predicted secondary structure, relative solvent accessibility, contact map and beta-strand pairing to extract pairwise structural compatibility features. Second, we apply support vector machines to these features to predict the structural relevance (i.e. in the same fold or not) of the query-template pairs. For each query, the continuous relevance scores are used to rank the templates. The FOLDpro approach is modular, scalable and effective. Compared with 11 other fold recognition methods, FOLDpro yields the best results in almost all standard categories on a comprehensive benchmark dataset. Using predictions of the top-ranked template, the sensitivity is approximately 85, 56, and 27% at the family, superfamily and fold levels respectively. Using the 5 top-ranked templates, the sensitivity increases to 90, 70, and 48%.  相似文献   

17.

Background  

Protein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further data sources derived from local sequence alignments. This raises the issue of finding the most efficient method for combining these different informative data sources and exploring their relative significance for protein fold classification. Kernel methods have been extensively used for biological data analysis. They can incorporate separate fold discriminatory features into kernel matrices which encode the similarity between samples in their respective data sources.  相似文献   

18.
We develop coarse-grained, distance- and orientation-dependent statistical potentials from the growing protein structural databases. For protein structural classes (alpha, beta, and alpha/beta), a substantial number of backbone-backbone and backbone-side-chain contacts stabilize the native folds. By taking into account the importance of backbone interactions with a virtual backbone interaction center as the 21st anisotropic site, we construct a 21 x 21 interaction scheme. The new potentials are studied using spherical harmonics analysis (SHA) and a smooth, continuous version is constructed using spherical harmonic synthesis (SHS). Our approach has the following advantages: (1) The smooth, continuous form of the resulting potentials is more realistic and presents significant advantages for computational simulations, and (2) with SHS, the potential values can be computed efficiently for arbitrary coordinates, requiring only the knowledge of a few spherical harmonic coefficients. The performance of the new orientation-dependent potentials was tested using a standard database of decoy structures. The results show that the ability of the new orientation-dependent potentials to recognize native protein folds from a set of decoy structures is strongly enhanced by the inclusion of anisotropic backbone interaction centers. The anisotropic potentials can be used to develop realistic coarse-grained simulations of proteins, with direct applications to protein design, folding, and aggregation.  相似文献   

19.
We present a comprehensive analysis of methods for improving the fold recognition rate of the threading approach to protein structure prediction by the utilization of few additional distance constraints. The distance constraints between protein residues may be obtained by experiments such as mass spectrometry or NMR spectroscopy. We applied a post-filtering step with new scoring functions incorporating measures of constraint satisfaction to ranking lists of 123D threading alignments. The detailed analysis of the results on a small representative benchmark set show that the fold recognition rate can be improved significantly by up to 30% from about 54%-65% to 77%-84%, approaching the maximal attainable performance of 90% estimated by structural superposition alignments. This gain in performance adds about 10% to the recognition rate already achieved in our previous study with cross-link constraints only. Additional recent results on a larger benchmark set involving a confidence function for threading predictions also indicate notable improvements by our combined approach, which should be particularly valuable for rapid structure determination and validation of protein models.  相似文献   

20.
A new protein fold recognition method is described which is both fast and reliable. The method uses a traditional sequence alignment algorithm to generate alignments which are then evaluated by a method derived from threading techniques. As a final step, each threaded model is evaluated by a neural network in order to produce a single measure of confidence in the proposed prediction. The speed of the method, along with its sensitivity and very low false-positive rate makes it ideal for automatically predicting the structure of all the proteins in a translated bacterial genome (proteome). The method has been applied to the genome of Mycoplasma genitalium, and analysis of the results shows that as many as 46 % of the proteins derived from the predicted protein coding regions have a significant relationship to a protein of known structure. In some cases, however, only one domain of the protein can be predicted, giving a total coverage of 30 % when calculated as a fraction of the number of amino acid residues in the whole proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号