首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the effect of estrogen on the rate of accumulation of apolipoproteins secreted by the human hepatocarcinoma cell line, HepG2. Prior to exposure to hormone, we detected less than 300 high-affinity, nuclear, estrogen-binding sites/cell. Within 48 h of growth in the presence of 20 nM 17 beta-estradiol this number rose to 3000-3500 sites/cell. Rates of accumulation of two of the major apolipoproteins, apo-C-II and apo-A-I increased 2.5- and 2.0-fold, respectively, in response to estrogen treatment. Other major apolipoproteins were not affected at this concentration of hormone. Induction of both proteins was completely antagonized by 20 nM testosterone. The density distribution of apolipoproteins secreted by the hepatocytes was similar to that reported using perfused liver systems. The consequences of estrogen treatment were to increase the apo-C-II/apo-C-III ratio in very low density lipoproteins as well as to decrease the overall very low density lipoprotein:high density lipoprotein ratio.  相似文献   

2.
3.
myo-Inositol 1-phosphate synthase (EC 5.5.1.4) (IPS) is a key enzyme in myo-inositol biosynthesis pathway. This study describes the molecular cloning of the full length human myo-inositol 1-phosphate synthase (hIPS) cDNA, tissue distribution of its mRNA and characterizes its gene expression in cultured HepG2 cells. Human testis, ovary, heart, placenta, and pancreas express relatively high level of hIPS mRNA, while blood leukocyte, thymus, skeletal muscle, and colon express low or marginal amount of the mRNA. In the presence of glucose, hIPS mRNA level increases 2- to 4-fold in HepG2 cells. hIPS mRNA is also up-regulated 2- to 3-fold by 2.5 microM lovastain. This up-regulation is prevented by mevalonic acid, farnesol, and geranylgeraniol, suggesting a G-protein mediated signal transduction mechanism in the regulation of hIPS gene expression. hIPS mRNA expression is 50% suppressed by 10mM lithium ion in these cells. Neither 5mM myo-inositol nor the three hormones: estrogen, thyroid hormone, and insulin altered hIPS mRNA expression in these cells.  相似文献   

4.
5.
The effects of androgen withdrawal and replacement on the concentrations of androgen receptor (AR) protein and AR mRNA were investigated in rat ventral prostate and seminal vesicles and in cultured human hepatoma (HepG2) cells. AR mRNA concentrations were determined by Northern blotting with single stranded AR cRNA as the hybridization probe, whereas antibodies raised against two synthetic 17-amino acid long peptides corresponding to the N-terminal and steroid-binding regions of the AR were employed in immunological receptor assays. AR mRNA levels in both prostate and seminal vesicles increased about 2-fold within 24 h after castration and continued to rise within the next 48 h to values that were 9- to 11-fold higher than those in intact controls. Administration of pharmacological doses of testosterone (400 micrograms steroid/day) to 1-day castrated animals for 24-48 h brought about a decrease in AR mRNA levels in accessory sex organs to levels in intact controls. Similar results were obtained in cultured HepG2 cells where a switch to serum- and steroid-free medium elicited a rapid increase (approximately 4-fold in 10 h) in the AR mRNA level, which was prevented by inclusion of 10(-7) M testosterone in culture medium. Similar, but quantitatively less marked, changes occurred in the AR protein concentration in prostate, seminal vesicles, and HepG2 cells, as determined by immunoblotting using antibodies against AR peptides. In addition, immunohistochemical studies showed that AR is a nuclear protein of the prostatic epithelial cells in both intact and castrated rats, and suggested that short term castration increases the concentration of nuclear AR in the prostate. Taken together, these data indicate that androgens down-regulate the concentration of AR protein and AR mRNA in a variety of target tissues.  相似文献   

6.
Rat M2-type pyruvate kinase mRNA was enriched from total polysomes isolated from AH-130 Yoshida ascites hepatoma cells, which contain a very high concentration of the M2-type enzyme, by immunoprecipitation with a specific antibody and Staphylococcus aureus cells. Double-stranded cDNA synthesized from the enriched mRNA was inserted into the PstI site of pBR322, and the resultant recombinant DNA molecules were used to transform Escherichia coli. Three clones containing DNA complementary to M2-type pyruvate kinase mRNA were identified by colony hybridization, hybrid-arrested translation, and hybrid-selected translation. A partial restriction map was constructed covering about 1.44 kilobase pairs. The cloned region of the M2-type mRNA showed a high degree of sequence homology with the M1-type mRNA and some homology with the L-type mRNA as determined by dot blot hybridization. The molecular size of the M2-type mRNA, which was estimated to be 2.35-2.65 kilobases on denaturing gel, was the same as that of the M1-type mRNA. The level of hepatic M2-type pyruvate kinase mRNA measured by hybridization assay using cloned cDNA as a probe was increased 2.5-fold 1 day and 3.9-fold 2 days after partial hepatectomy and then started to decrease. This induction was followed by similar changes in the enzyme activity. AH-130 hepatoma cells contained 100-150 times more M2-type isozyme mRNA than regenerating liver. These results suggest that the increased levels of M2-type isozyme in regenerating liver and hepatoma cells are primarily due to elevation of hybridizable M2-type mRNA concentration.  相似文献   

7.
8.
Tissue-specific regulation of rat estrogen receptor mRNAs   总被引:9,自引:0,他引:9  
The estrogen receptor (ER) is present in a wide variety of mammalian tissues and is required for physiological estrogen responses, including estrogen-induced tissue-specific changes in gene expression. We studied the estrogen regulation of the mRNAs encoding the ER in rat uterus, liver, and pituitary. Ovariectomized (21-28 day post surgery) female CD-1 rats were injected daily with 17 beta-estradiol (E2, 10 micrograms/100 g BW) for 0, 1, or 4 h, 1, 3, or 7 days and compared with intact controls. Steady-state levels of ER mRNA were quantified using a human ER cDNA probe. Only one hybridizing species of approximately 6.2 kilobase (kb) was detected in uterine and liver RNA, similar to that observed in MCF7 human breast cancer cells. However, the ER mRNA regulation by E2 differed in direction depending on the tissue examined. In uterus, ER mRNA increased 3- to 6-fold after ovariectomy, and returned to intact levels within 24 h of E2 replacement. In contrast, liver ER mRNA declined 1.5- to 3-fold after ovariectomy and returned to intact levels after 1-3 days of E2. In pituitary tissue two hybridizing forms of ER mRNA were observed, with one species migrating at 6.2 kb, equivalent to the form in other tissues, and a second smaller species at approximately 5.5 kb. The lower molecular weight species varied somewhat in abundance from animal to animal, averaging about 20% of the intensity of the 6.2 kb band. The ER mRNA forms were regulated positively with E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The scavenger receptor class B type I (SR-BI) binds to HDL and mediates the selective uptake of cholesterol esters from HDL to cells. SR-BII is an alternatively spliced product of the SR-BI gene that only differs in the C-terminal cytoplasmic domain. Previous studies with male mice demonstrated that SR-BII comprises about 12% of the total SR-BI/SR-BII present in liver. In the current studies we used a liver cell line, HepG2, and a rat estrogen replacement model to examine the effects of estrogen on the expression of SR-BII. HepG2 cells express SR-BI but not SR-BII. SR-BI/SR-BII - blocking antibodies demonstrated that HepG2 cells selectively internalize cholesterol esters in a SR-BI - dependent manner. Incubation of HepG2 cells with 10 pM of 17beta-estradiol for 12 h eliminated the expression of SR-BI and promoted the up-regulation of SR-BII. Radiolabeled HDL-binding studies demonstrated that 17beta-estradiol increased the number of HDL binding sites by 3-fold in HepG2 cells. However, 17beta-estradiol - treated cell internalized approximately 25% less cholesterol ester than vehicle-only-treated cells. The livers obtained from male rats and ovariectomized female rats contained SR-BI and a small amount of SR-BII. In contrast, the livers obtained from intact female rats and ovariectomized female rats receiving estrogen replacement contained SR-BII and a small amount of SR-BI. The amount of SR-BI and SR-BII in adrenal tissue was not affected by any of the experimental treatments.We conclude that estrogen up-regulates SR-BII in HepG2 cells and rat liver.  相似文献   

10.
A solution hybridization/RNase protection assay with riboprobes was developed to quantitate apolipoprotein mRNA concentrations. Previously, radiolabeled DNA probes have been used in solution hybridization/S1 nuclease protection assays for this purpose. The new assay requires less time for probe preparation and hybridization compared to previous assays. In addition, the vector used for riboprobe preparation can also be used to conveniently produce cRNA required to generate the standard curve to quantitate absolute apolipoprotein mRNA levels. The solution hybridization RNase protection assay was used to quantitate apoB, A-I, and E mRNA levels in four human hepatoma cell lines, HepG2, Hep3B, WRL-68, SK-Hep2. HepG2 and Hep3B, but not WRL-68 and SK-Hep2 cells had concentrations of all three apolipoprotein mRNAs comparable to liver in vivo. These data suggest that HepG2 and Hep3B are suitable models to study liver specific apolipoprotein gene expression.  相似文献   

11.
12.
13.
14.
Apolipoprotein M (apoM) is a recently discovered human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma, exclusively expressed in liver and in kidney. The function of apoM is yet unknown. The human apoM gene is located in the major histocompatibility complex class III region on chromosome 6. Because many genes located in this region are related to the immune response, we have investigated whether apoM might also be involved in the host inflammatory response. In this study we examined effects of the platelet-activating factor (PAF), tumor necrosis factor (TNF-alpha), and interleukin-1alpha (IL-1alpha) on apoM expression in a hepatoblastoma cell line, HepG2 cells. PAF significantly enhanced the apoM mRNA levels and the secretion of apoM in HepG2 cell cultures. The enhancement of apoM secretion is seen at a low concentration of PAF (2 ng/ml), whereas a high concentration of PAF increases both the apoM mRNA levels and apoM secretion. Neither TNF-alpha nor IL-1alpha influenced apoM mRNA level and secretion. Furthermore, Lexipafant, a PAF-receptor (PAF-R) antagonist significantly suppressed the mRNA level and the secretion of apoM in HepG2 cells in a dose-dependent manner. Neither PAF nor Lexipafant influenced the mRNA levels and the secretion of apoA-I, apoB and apoE in HepG2 cells, indicating that the effects of PAF or Lexipafant on the apoM production on hepatic cells are selective for apoM. The cellular mechanism of the effects of PAF or Lexipafant on apoM metabolism requires further investigations.  相似文献   

15.
We isolated a HepG2-derived sub-clone (HepG2-Lipo), which possessed an increased lipoprotein synthesizing ability. HepG2-Lipo cells could secrete triglycerides (TG) and cholesterol at rates 9.4- and 6-fold higher, respectively, when compared to HepG2 cells. Real-time RT-PCR analysis revealed that the expression levels of sterol regulatory element-binding protein-1c and -2 were 2.9- and 1.5-fold higher than in HepG2 cells. Furthermore, two apolipoprotein (apo) genes (apoA-1 and apoB-100) in HepG2-Lipo cells were expressed at 2.8- and 1.9-fold higher levels when compared to those in parental cells. We examined the effects of three antihyperlipidemic agents on the lipoprotein profiles of HepG2-Lipo cells. Simvastatin at 5 μM selectively suppressed cholesterol secretion from HepG2-Lipo cells, and 500 μM fenofibrate inhibited both TG and cholesterol secretion from the cells.  相似文献   

16.
Estrogens have previously been shown to induce DNA damage in Syrian hamster kidney, a target organ of estrogen-induced cancer. The biochemical mechanism of DNA adduction has been postulated to involve free radicals generated by redox cycling of estrogens. As part of an examination of this postulate, we measured the effect of chronic estrogen treatment of hamsters on renal microsomal enzymes mediating catechol estrogen formation and free radical generation by redox cycling of catechol estrogens. In addition, the activities of the same enzymes were assayed in liver in which tumors do not develop under these conditions. At saturating substrate concentration, 2- and 4-hydroxyestradiol were formed in approximately equal amounts (26 and 28 pmol/mg protein/min, respectively), which is 1-2 orders of magnitude higher than reported previously. Estradiol treatment for 2 months decreased 2-hydroxylase activity per mg protein by 75% and 4-hydroxylase activity by 25%. Hepatic 2- and 4-hydroxylase activities were 1256 and 250 pmol/mg protein/min, respectively. Estrogen treatment decreased both activities by 40-60%. Basal peroxidatic activity of cytochrome P-450, the enzyme which oxidizes estrogen hydroquinones to quinones in the redox cycle, was 2.5-fold higher in liver than in kidney and did not change with estrogen treatment. However, when normalized for specific content of cytochrome P-450 the enzyme activity in kidney was 2.5-fold higher than in liver and increased further by 2-3-fold with chronic estrogen treatment. The activity of cytochrome P-450 reductase, which reduces quinones to hydroquinones in the estrogen redox cycle, was 6-fold higher in liver than in kidney of both control and estrogen-treated animals. When normalized for cytochrome P-450, the activity of this enzyme was similar in liver and kidney, but over 4-fold higher in kidney than liver after estrogen treatment. Basal concentrations of superoxide, a product of redox cycling, were 2-fold higher in liver than in kidney. Estrogen treatment did not affect this parameter in liver, but increased it in kidney by 40%. These data provide evidence for a preferential preservation of enzymes involved in estrogen activation.  相似文献   

17.
Overexpressing StAR (a mitochondrial cholesterol transporter) increases (>5-fold) the rate of 27-hydroxylation of cholesterol and the rates of bile acid synthesis in primary rat hepatocytes; suggesting that the transport of cholesterol into mitochondria is rate-limiting for bile acid biosynthesis via the CYP27A1 initiated 'acidic' pathway. Our objective was to determine the level of StAR expression in human liver and whether changes in StAR would correlate with changes in CYP27A1 activity/bile acid synthesis rates in human liver tissues. StAR mRNA and protein were detected in primary human hepatocytes and HepG2 cells by RT-PCR/Northern analysis and by Western analysis, respectively. In immunocompetition assays, liver StAR was competed away with the addition of purified human adrenal StAR. Overexpressing CYP27A1 in both cell types led to >2-fold increases in liver StAR concentration. StAR protein levels also increased approximately 2-fold with the addition of 27-hydroxycholesterol to HepG2 cell culture medium. Overexpressing StAR increased the rates of 27-hydroxylation of cholesterol/bile acid synthesis in both cell lines and increased intracellular levels of 27-hydroxycholesterol. In conclusion, human liver cells contain regulable StAR protein whose level of expression appears capable of regulating cellular cholesterol homeostasis, representing a potential therapeutic target in the management of hyperlipidemia.  相似文献   

18.
Many arylamine and hydrazine drugs and xenobiotics are acetylated by N-acetyltransferase (NAT), a cytosolic enzymic activity which has a wide tissue distribution. Humans can be classified as either fast or slow acetylators on the basis of their ability to metabolise isoniazid or sulphamethazine. These are termed polymorphic substrates. The acetylation of other compounds does not vary amongst individuals, e.g., p-aminobenzoic acid, and are termed monomorphic substrates. NAT from human hepatic and non-hepatic tissues, viz., (i) liver, (ii) the hepatoma cell line HepG2, (iii) tonsil lymphocytes and (iv) the monocytic cell line U937 have been compared with respect to substrate specificity towards polymorphic and monomorphic substrates. The chromatographic and centrifugation behaviour of NAT from these sources has also been investigated. NAT from liver shows 2-fold greater activity towards sulphamethazine than towards p-aminobenzoic acid as substrate. All other cell types tested show at least 70-fold greater activity with p-aminobenzoic as substrate compared to sulphamethazine. NAT from HepG2 cells, U937 cells and tonsil lymphocytes migrates as a single peak during ion-exchange chromatography, whereas the liver NAT activity is separated into two peaks. NAT in HepG2 cells resembles extra-hepatic tissue NAT rather than NAT in liver. HepG2 cells do not therefore represent a good in vitro model for investigation of human metabolism of arylamines or hydrazines. The molecular weight of NAT from U937 cells has been determined by a combination of sucrose density gradient centrifugation and gel filtration to be 31,600 +/- 1200 daltons.  相似文献   

19.
Conditioned medium from human monocyte-macrophages incubated under various conditions was tested for its ability to stimulate fibrinogen mRNA levels in the hepatoma cell line HepG2. Recombinant human interleukin-6 (IL-6) stimulated fibrinogen mRNA levels 4.4-fold over control levels; this response was blocked by an anti-IL-6 antibody. Conditioned medium from 3-day-cultured monocyte-macrophages produced a slight stimulation of fibrinogen synthesis in HepG2 cells which was enhanced when the monocyte-macrophages had been treated with lipopolysaccharide (LPS). This stimulation was blocked by the anti IL-6 antibody. The cytokines, interleukin-1 (IL-1) and tumour necrosis factor (TNF) were also detected in the conditioned medium from the 3-day-cultured monocyte-macrophages. Monocyte-macrophages were cultured for 17 days and then incubated with acetylated low density lipoprotein (AcLDL) for 48 h. Such cells were 'foamy' in appearance and showed a 4-fold increase in apoE mRNA and a 10 to 50-fold increase in apoE secretion. This increase in apoE production was suppressed by almost a third when cells were coincubated with AcLDL and LPS. Conditioned medium from these 17-day-cultured AcLDL-treated human monocyte-macrophages did not stimulate fibrinogen mRNA synthesis in HepG2 cells, nor did the conditioned medium contain detectable levels of cytokines. These results suggest that cytokine production from foam cells in the atherosclerotic lesion is unlikely to be a major contributing factor in determining the elevated fibrinogen levels seen in the plasma of patients with IHD.  相似文献   

20.
Ten murine monoclonal antibodies have been produced that are specific for bovine milk lipoprotein lipase. One monoclonal antibody, bLPL-mAb-7, inhibited completely the apolipoprotein C-II (apo-C-II)-dependent enzymic hydrolysis of trioleoylglycerol in a phospholipid-stabilized emulsion, but had no effect on the hydrolysis of the water-soluble substrate p-nitro-phenylacetate. Four times more bLPL-mAb-7 was required to achieve 50% inactivation of lipoprotein lipase activity when the enzyme was preincubated with excess apo-C-II. Disruption of the binding of a dansyl-labeled apo-C-II peptide to lipoprotein lipase by bLPL-mAb-7 was demonstrated by resonance energy transfer, both in the presence and absence of lipid. This antibody thus appears to recognize the apo-C-II binding site of lipoprotein lipase. In addition, bLPL-mAb-7 also inhibited the lipoprotein lipase activity of human post-heparin plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号