首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report here a sensitive and specific polymerase chain reaction (PCR) detection assay for the pathogenic Candida yeast based on the novel LYS1 [encoding saccharopine dehydrogenase (SDH)] and LYS5 [encoding phosphopantetheinyl transferase (PPTase)] gene sequences of the fungal unique lysine biosynthetic pathway. Both LYS1 and LYS5 DNA-specific PCR primers SG1, SG2 and SG3, SG4, respectively, amplified predicted 483 and 648-bp fragments from Candida albicans genomic DNA but not from other selected fungal, bacterial, or human DNA. The 18S rDNA control primers exhibited positive amplifications in all PCR assays. The LYS1-and LYS5-specific primers strongly amplified C. albicans and Candida tropicalis target sequences; however, the LYS1 primers also weakly amplified fragments from Candida kefyr and Candida lusitaniae DNA. Both sets of primers amplified target sequences from less than 10 pg of serially diluted C. albicans DNA, and the LYS1 specific primers also detected DNA isolated from serially diluted 50 C. albicans cells. The PCR primers reported here are sufficiently sensitive and specific for the potential early detection of Candida infections with no possibility of false positive results from cross-contamination with bacterial or human DNA.  相似文献   

3.
4.
Both in mammals and plants, excess lysine (Lys) is catabolized via saccharopine into alpha-amino adipic semialdehyde and glutamate by two consecutive enzymes, Lys-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH), which are linked on a single bifunctional polypeptide. To study the control of metabolite flux via this bifunctional enzyme, we have purified it from developing soybean (Glycine max) seeds. LKR activity of the bifunctional LKR/SDH possessed relatively high K(m) for its substrates, Lys and alpha-ketoglutarate, suggesting that this activity may serve as a rate-limiting step in Lys catabolism. Despite their linkage, the LKR and SDH enzymes possessed significantly different pH optima, suggesting that SDH activity of the bifunctional enzyme may also be rate-limiting in vivo. We have previously shown that Arabidopsis plants contain both a bifunctional LKR/SDH and a monofunctional SDH enzymes (G. Tang, D. Miron, J.X. Zhu-Shimoni, G. Galili [1997] Plant Cell 9: 1-13). In the present study, we found no evidence for the presence of such a monofunctional SDH enzyme in soybean seeds. These results may provide a plausible regulatory explanation as to why various plant species accumulate different catabolic products of Lys.  相似文献   

5.
The LYS2 and LYS5 genes of the pathogenic yeast Candida albicans are required for the alpha-aminoadipate reductase (AAR) reaction in the lysine biosynthetic pathway. The LYS2 encodes an apo-AAR (Lys2p) and the LYS5 encodes a phosphopantetheinyl transferase (PPTase) for the post-translational activation of AAR. Our cloned C. albicans LYS5 gene encodes a 38.4 kDa PPTase which is 27% identical and 43% similar to the Saccharomyces cerevisiae Lys5p. Sequence alignment of Lys5p with other PPTases reveals highly conserved putative PPTase domains including the Core 3, WXXKESXXK (residues 194-202). Recombinant Lys5p expressed in Escherichia coli activates C. albicans Lys2p for the AAR activity and also activates AARs from S. cerevisiae and to a lesser extent Schizosaccharomyces pombe. Site-directed mutational analyses reveal glutamic acid 198 in the Lys5p Core 3 as essential for the activation of recombinant Lys2p AAR activity. Other conserved amino acids were also analyzed for their influence on Lys5p PPTase activity. Our results demonstrate cloning of the LYS5 gene, expression of Lys5p, in vitro Lys2p activation model and characterization of the functional motifs of the C. albicans PPTase.  相似文献   

6.
7.
8.
9.
Zhu X  Tang G  Granier F  Bouchez D  Galili G 《Plant physiology》2001,126(4):1539-1545
Plants possess both anabolic and catabolic pathways for the essential amino acid lysine (Lys). However, although the biosynthetic pathway was clearly shown to regulate Lys accumulation in plants, the functional significance of Lys catabolism has not been experimentally elucidated. To address this issue, we have isolated an Arabidopsis knockout mutant with a T-DNA inserted into exon 13 of the gene encoding Lys ketoglutarate reductase/saccharopine dehydrogenase. This bifunctional enzyme controls the first two steps of Lys catabolism. The phenotype of the LKR/SDH knockout was indistinguishable from wild-type plants under normal growth conditions, suggesting that Lys catabolism is not an essential pathway under standard growth conditions. However, mature seeds of the knockout mutant over-accumulated Lys compared with wild-type plants. This report provides the first direct evidence for the functional significance of Lys catabolism in regulating Lys accumulation in seeds. Such a knockout mutant may also provide new perspectives to improve the level of the essential amino acid Lys in plant seeds.  相似文献   

10.
Lysine is a nutritionally important essential amino acid, whose synthesis in plants is strongly regulated by the rate of its synthesis. Yet, lysine level in plants is also finely controlled by a super-regulated catabolic pathway that catabolizes lysine into glutamate and acetyl Co-A. The first two enzymes of lysine catabolism are synthesized from a single LKR/SDH gene. Expression of this gene is subject to compound developmental, hormonal and stress-associated regulation. Moreover, the LKR/SDH gene of different plant species encodes up to three distinct polypeptides: (i) a bifunctional enzyme containing the linked lysine-ketoglutarate (LKR) and saccharopine dehydrogenase (SDH) whose LKR activity is regulated by its linked SDH enzyme; (ii) a monofunctional SDH encoded by an internal promoter, which is a part of the coding DNA region of the LKR/SDH gene; and (iii) a monofunctional, highly potent LKR that is formed by polyadenylation within an intron. LKR activity in the bifunctional LKR/SDH polypeptide is also post-translationally regulated by phosphorylation by casein kinase-2 (CK2), but the consequence of this regulation is still unknown. Why is lysine metabolism super-regulated by synthesis and catabolism? A hypothesis addressing this important question is presented, suggesting that lysine may serve as a regulator of plant growth and interaction with the environment.  相似文献   

11.
Catabolism of lysine through the pipecolate, saccharopine and cadaverine pathways has been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Both enzymes of the saccharopine pathway (lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH)) were active in L3 and adult worms of both species. All three enzymes which catabolise lysine to α-amino adipic semialdehyde via pipecolate (lysine oxidase (LO), Δ(1)-piperideine-2-carboxylate reductase (Pip2CR) and pipecolate oxidase (PipO)) were present in adult worms, whereas the pathway was incomplete in L3 of both species; Pip2CR activity was not detected in the L3 of either parasite species. In adult worms, the saccharopine pathway would probably be favoured over the pipecolate pathway as the K(m) for lysine was lower for LKR than for LO. Neither lysine dehydrogenase nor lysine decarboxylase activity was detected in the two parasite species. Enzyme activities and substrate affinities were higher for all five enzymes in adult worms than in L3. An unexpected finding was that both LKR and SDH were dual co-factor enzymes and not specific for either NAD(+) or NADP(+), as is the case in other organisms. This novel property of LKR/SDH suggests it could be a good candidate for anthelmintic targeting.  相似文献   

12.
Lysine (Lys) is the first limiting essential amino acid in rice, a stable food for half of the world population. Efforts, including genetic engineering, have not achieved a desirable level of Lys in rice. Here, we genetically engineered rice to increase Lys levels by expressing bacterial lysine feedback‐insensitive aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS) to enhance Lys biosynthesis; through RNA interference of rice lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase (LKR/SDH) to down‐regulate its catabolism; and by combined expression of AK and DHPS and interference of LKR/SDH to achieve both metabolic effects. In these transgenic plants, free Lys levels increased up to ~12‐fold in leaves and ~60‐fold in seeds, substantially greater than the 2.5‐fold increase in transgenic rice seeds reported by the only previous related study. To better understand the metabolic regulation of Lys accumulation in rice, metabolomic methods were employed to analyse the changes in metabolites of the Lys biosynthesis and catabolism pathways in leaves and seeds at different stages. Free Lys accumulation was mainly regulated by its biosynthesis in leaves and to a greater extent by catabolism in seeds. The transgenic plants did not show observable changes in plant growth and seed germination nor large changes in levels of asparagine (Asn) and glutamine (Gln) in leaves, which are the major amino acids transported into seeds. Although Lys was highly accumulated in leaves of certain transgenic lines, a corresponding higher Lys accumulation was not observed in seeds, suggesting that free Lys transport from leaves into seeds did not occur.  相似文献   

13.
Stepansky A  Galili G 《Plant physiology》2003,133(3):1407-1415
In plants, excess cellular lysine (Lys) is catabolized into glutamic acid and acetyl-coenzyme A; yet, it is still not clear whether this pathway has other functions in addition to balancing Lys levels. To address this issue, we examined the effects of stress-related hormones, abscisic acid (ABA), and jasmonate, as well as various metabolic signals on the production of the mRNA and polypeptide of the bifunctional Lys-ketoglutarate reductase (LKR)/saccharopine dehydrogenase (SDH) enzyme, which contains the first two linked enzymes of Lys catabolism. The level of LKR/SDH was strongly enhanced by ABA, jasmonate, and sugar starvation, whereas excess sugars and nitrogen starvation reduced its level; thus this pathway appears to fulfill multiple functions in stress-related and carbon/nitrogen metabolism. Treatments with combination of hormones and/or metabolites, as well as use of ABA mutants in conjunction with the tester sugars mannose and 3-O-methyl-glucose further supported the idea that the hormonal and metabolic signals apparently operate through different signal transduction cascades. The stimulation of LKR/SDH protein expression by ABA is regulated by a signal transduction cascade that contains the ABI1-1 and ABI2-1 protein phosphatases. By contrast, the stimulation of LKR/SDH protein expression by sugar starvation is regulated by the hexokinase-signaling cascade in a similar manner to the repression of many photosynthetic genes by sugars. These findings suggest a metabolic and mechanistic link between Lys catabolism and photosynthesis-related metabolism in the regulation of carbon/nitrogen partitioning.  相似文献   

14.
Two genes, LYS21 and LYS22, encoding isoforms of homocitrate synthase, an enzyme catalysing the first committed step in the lysine biosynthetic pathway, were disrupted in Candida albicans using the SAT1 flipper strategy. The double null lys21Δ/lys22Δ mutant lacked homocitrate synthase activity and exhibited lysine auxotrophy in minimal media that could be fully rescued by the addition of 0.5–0.6 mM l-lysine. On the other hand, its virulence in vivo in the model of disseminated murine candidiasis appeared identical to that of the mother, wild-type strain. These findings strongly question a possibility of exploitation of homocitrate synthase and possibly also other enzymes of the lysine biosynthetic pathway as targets in chemotherapy of disseminated fungal infections.  相似文献   

15.
Both plants and animals catabolize lysine via saccharopine by two consecutive enzymes, lysine-ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH), which are linked on a single polypeptide. We recently demonstrated that Arabidopsis plants possess not only a bifunctional LKR/SDH but in addition a monofunctional SDH enzyme. We also speculated that these two enzymes may be controlled by a single gene (G. Tang et al. Plant Cell, 1997, 9, 1305-1316). By expressing several epitope-tagged and GUS reporter constructs, we demonstrate in the present study that the Arabidopsis monofunctional SDH is encoded by a distinct gene, which is, however, nested entirely within the coding and 3' non-coding regions of the larger bifunctional LKR/SDH gene. The entire open reading frame of the monofunctional SDH gene, as well as some components of its promoter, are also parts of the translated coding sequence of the bifunctional LKR/SDH gene. These special structural characteristics, combined with the fact that the two genes encode simultaneously two metabolically related but distinct enzymes, render the LKR/SDH locus a novel type of a composite locus. Not all plant species possess an active monofunctional SDH gene and the production of this enzyme is correlated with an increased flux of lysine catabolism. Taken together, our results suggest that the composite LKR/SDH locus serves to control an efficient, highly regulated flux of lysine catabolism  相似文献   

16.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

17.
The regulatory properties of four enzymes (homocitrate synthase, -aminoadipate reductase, saccharopine reductase, saccharopine dehydrogenase) involved in the lysine biosynthesis of Pichia guilliermondii were investigated and compared with the regulatory patterns found in other yeast species. The first enzyme of the pathway, homocitrate synthase, is feedback-inhibited by L-lysine. Some other amino acids (-aminoadipate, glutamate, tryptophan, leucine) and lysine analogues are also inhibitors of one or more enzymes. It is shown that only the synthesis of homocitrate synthase is weakly repressed by L-lysine.  相似文献   

18.
Heterokaryons (hets), but not monokaryons of Candida albicans die when grown anaerobically on minimal medium. Their rates of inactivation increase with decreases in growth temperatures from 37°C to 25°C. At 10°C, however, anaerobiosis is not lethal and suppresses the inactivation which normally occurs among hets cultured aerobically at that temperature. Killing of hets by anaerobiosis can be altered significantly by certain exogenously provided amino acids or intermediates of oxidative respiration. Aspartic acid alone promotes inactivation whereas alanine, glutamic acid or lysine individually have no effects. However, glutamate and lysine combined afford slight protection against inactivation while aspartate and glutamate combined, with or without lysine, are highly protective: the activity of the aspartate-glutamate combination is completely negated by the addition of alanine. Other common amino acids have no effects on het responses to anaerobiosis other than the ability, when combined, to relieve the antagonism of alanine for the aspartate-glutamate combination. Anaerobic survivals are also enhanced by oxalacetic acid or -ketoglutaric acid, and even more so by a combination of these two intermediates. The resistances to inactivation elicited by the oxalacetate -ketoglutarate or aspartate-glutamate combinations are not additive. These relationships are interpreted to signify that inactivation of hets by anaerobic growth is largely, if not exclusively, due to depletion of their oxalacetic acid and -ketoglutaric acid contents for amino acid biosyntheses, and the unique inability of het cells to replenish those keto acids upon subsequent return to aerobic conditions. The observations are consistent with previous indications that mitochondria formed by hets are functionally abnormal.  相似文献   

19.
20.
Lysine metabolism in higher plants   总被引:4,自引:0,他引:4  
Azevedo RA  Lea PJ 《Amino acids》2001,20(3):261-279
Summary. The essential amino acid lysine is synthesised in higher plants via a pathway starting with aspartate, that also leads to the formation of threonine, methionine and isoleucine. Enzyme kinetic studies and the analysis of mutants and transgenic plants that overaccumulate lysine, have indicated that the major site of the regulation of lysine synthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, there is strong evidence that lysine is also subject to catabolism in plants, specifically in the seed. The two enzymes involved in lysine breakdown, lysine 2-oxoglutarate reductase (also known as lysine α-ketoglutarate reductase) and saccharopine dehydrogenase exist as a single bifunctional protein, with the former activity being regulated by lysine availability, calcium and phosphorylation/dephosphorylation. Received December 21, 1999 Accepted February 7, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号