首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baker RF  Braun DM 《Plant physiology》2008,146(3):1085-1097
Regulation of carbon partitioning is essential for plant growth and development. To gain insight into genes controlling carbon allocation in leaves, we identified mutants that hyperaccumulate carbohydrates. tie-dyed2 (tdy2) is a recessive mutant of maize (Zea mays) with variegated, nonclonal, chlorotic leaf sectors containing excess starch and soluble sugars. Consistent with a defect in carbon export, we found that a by-product of functional chloroplasts, likely a sugar, induces tdy2 phenotypic expression. Based on the phenotypic similarities between tdy2 and two other maize mutants with leaf carbon accumulation defects, tdy1 and sucrose export defective1 (sxd1), we investigated whether Tdy2 functioned in the same pathway as Tdy1 or Sxd1. Cytological and genetic studies demonstrate that Tdy2 and Sxd1 function independently. However, in tdy1/+; tdy2/+ F(1) plants, we observed a moderate chlorotic sectored phenotype, suggesting that the two genes are dosage sensitive and have a related function. This type of genetic interaction is referred to as second site noncomplementation and has often, though not exclusively, been found in cases where the two encoded proteins physically interact. Moreover, tdy1; tdy2 double mutants display a synergistic interaction supporting this hypothesis. Additionally, we determined that cell walls of chlorotic leaf tissues in tdy mutants contain increased cellulose; thus, tdy mutants potentially represent enhanced feedstocks for biofuels production. From our phenotypic and genetic characterizations, we propose a model whereby TDY1 and TDY2 function together in a single genetic pathway, possibly in homo- and heteromeric complexes, to promote carbon export from leaves.  相似文献   

2.
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.  相似文献   

3.
Baker RF  Braun DM 《Plant physiology》2007,144(2):867-878
The tie-dyed1 (tdy1) mutant of maize (Zea mays) produces chlorotic, anthocyanin-accumulating regions in leaves due to the hyperaccumulation of carbohydrates. Based on the nonclonal pattern, we propose that the accumulation of sucrose (Suc) or another sugar induces the tdy1 phenotype. The boundaries of regions expressing the tdy1 phenotype frequently occur at lateral veins. This suggests that lateral veins act to limit the expansion of tdy1 phenotypic regions by transporting Suc out of the tissue. Double mutant studies between tdy1 and chloroplast-impaired mutants demonstrate that functional chloroplasts are needed to generate the Suc that induces the tdy1 phenotype. However, we also found that albino cells can express the tdy1 phenotype and overaccumulate Suc imported from neighboring green tissues. To characterize the site and mode of action of Tdy1, we performed a clonal mosaic analysis. In the transverse dimension, we localized the function of Tdy1 to the innermost leaf layer. Additionally, we determined that if this layer lacks Tdy1, Suc can accumulate, move into adjacent genetically wild-type layers, and induce tdy1 phenotypic expression. In the lateral dimension, we observed that a tdy1 phenotypic region did not reach the mosaic sector boundary, suggesting that wild-type Tdy1 acts non-cell autonomously and exerts a short-range compensatory effect on neighboring mutant tissue. A model proposing that Tdy1 functions in the vasculature to sense high concentrations of sugar, up-regulate Suc transport into veins, and promote tissue differentiation and function is discussed.  相似文献   

4.
The tie-dyed1 (tdy1) and tdy2 mutants of maize exhibit leaf regions with starch hyperaccumulation and display unusual genetic interactions, suggesting they function in the same physiological process. Tdy2 encodes a putative callose synthase and is expressed in developing vascular tissues of immature leaves. Radiolabelling experiments and transmission electron microscopy (TEM) revealed symplastic trafficking within the phloem was perturbed at the companion cell/sieve element interface. Here, we show that as reported for tdy2 mutants, tdy1 yellow leaf regions display an excessive oil-droplet phenotype in the companion cells. Based on the proposed function of Tdy2 as a callose synthase, our previous work characterizing Tdy1 as a novel, transmembrane-localized protein, and the present findings, we speculate how TDY1 and TDY2 might interact to promote symplastic transport of both solutes and developmentally instructive macromolecules during vascular development at the companion cell/sieve element interface.  相似文献   

5.
6.
tie-dyed1 (tdy1) and sucrose export defective1 (sxd1) are recessive maize (Zea mays) mutants with nonclonal chlorotic leaf sectors that hyperaccumulate starch and soluble sugars. In addition, both mutants display similar growth-related defects such as reduced plant height and inflorescence development due to the retention of carbohydrates in leaves. As tdy1 and sxd1 are the only variegated leaf mutants known to accumulate carbohydrates in any plant, we investigated whether Tdy1 and Sxd1 function in the same pathway. Using aniline blue staining for callose and transmission electron microscopy to inspect plasmodesmatal ultrastructure, we determined that tdy1 does not have any physical blockage or alteration along the symplastic transport pathway as found in sxd1 mutants. To test whether the two genes function in the same genetic pathway, we constructed F2 families segregating both mutations. Double mutant plants showed an additive interaction for growth related phenotypes and soluble sugar accumulation, and expressed the leaf variegation pattern of both single mutants indicating that Tdy1 and Sxd1 act in separate genetic pathways. Although sxd1 mutants lack tocopherols, we determined that tdy1 mutants have wild-type tocopherol levels, indicating that Tdy1 does not function in the same biochemical pathway as Sxd1. From these and other data we conclude that Tdy1 and Sxd1 function independently to promote carbon export from leaves. Our genetic and cytological studies implicate Tdy1 functioning in veins, and a model discussing possible functions of TDY1 is presented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Juvenile leaves of the variegated Hollywood juniper, Juniperus chinensis 'Torulosa Variegata', have sectorial chimeras of variable widths and lengths. Sectors extend over several nodes often as small as 1/24 the circumference of the leaf. Other chimeras appear as light green to yellow streaks but are actually internal, dark green corpus sectors often occupying less than 1/20 of the cross sectional area of a leaf. On the basis of the sizes of these two types of sectors, there seems to be ideally about 168 founder cells comprising 63 tunica cells and 105 corpus cells; 49 of the latter are contiguous with the tunica and 66 are located deeper in the corpus. Similarly, sectoring in axillary branches of original chimeric sprays have the same types of sectoring. It is hypothesized that the outer rings of founder cells form two arcs of 12 cells around the stem apex, one for each of two leaves at a node of the decussate shoot, of a circumference of about 50 cells.  相似文献   

8.
We evaluated the association of red coloration with senescence in sugar maple (Acer saccharum Marsh.) leaves by assessing differences in leaf retention strength and the progression of the abscission layer through the vascular bundle of green, yellow, and red leaves of 14 mature open-grown trees in October 2002. Computer image analysis confirmed visual categorization of leaves as predominantly green, yellow or red, and chemical quantification of leaf pigment concentrations verified that leaf color reflected underlying differences in leaf biochemistry. Significantly lower chlorophyll concentrations within red and yellow leaves indicated that senescence was more advanced in leaves from these color categories relative to green leaves. Among leaf types, only red leaves contained high concentrations of anthocyanins. There were significant differences in leaf retention capacity among color categories, with the petioles of green leaves being the most firmly attached to twigs, followed by red and then yellow leaves. Microscopic analysis indicated that yellow leaves had the most advanced extension of the abscission layer through the vasculature, with green and red leaves having significantly less abscission layer progression than yellow. A more limited progression of the abscission layer through vascular bundles may be evidence of delayed leaf senescence that could extend resorption of mobile leaf constituents. Together, results from this study suggest an association between leaf anthocyanin content and functional delays in senescence.  相似文献   

9.
金叶连翘不同冠层的成熟叶片呈现为不同颜色。以朝鲜连翘深绿色叶为对照,观察金叶连翘冠层上、中、下位叶色,测定其叶片大小和叶绿素a、叶绿素b、总叶绿素及类胡萝卜素含量,同时观察分析叶片横切面解剖结构,旨在阐明叶片色素含量和解剖结构对叶色的影响。研究表明:上层黄色、中层黄绿色、下层浅绿色,黄、黄绿、浅绿色叶总叶绿素含量分别是对照组的0.51%、4.44%和66.47%,均极显著低于对照(P <0.01),但黄绿叶的叶绿素a/b比值显著升高(P <0.05),黄、黄绿叶的总叶绿素/类胡萝卜素比值极显著降低(P <0.01)。黄、黄绿叶的叶绿体发育停滞于单片层时期,类囊体分化程度低,浅绿叶类囊基粒片层肿胀;黄叶细胞器降解,栅栏组织细胞形状难以辨别,黄绿叶上表皮细胞凸起。金叶连翘属于总叶绿素及叶绿素b合成减少型突变体,表现为叶绿素严重缺失,类胡萝卜素相对含量升高;其叶绿体发育停滞,类囊体结构异常,是金叶连翘叶片呈现不同颜色的主要因素,与其叶片解剖显微结构无关。  相似文献   

10.
以菊花黄绿叶突变体-NAu04-1-31为试验材料,测定了黄叶、黄绿叶和绿叶3种不同类型叶片的叶绿素含量,并观察比较了叶片的显微与超微解剖结构.叶绿素含量测定表明:黄叶、黄绿叶的叶绿素含量显著低于绿叶,而黄叶叶绿素a与叶绿素b的比值大于绿叶.叶绿体显微与超微结构观察发现:黄叶细胞内叶绿体形状不规1则,缺乏正常的叶绿体膜结构,无类囊体,无淀粉粒,嗜锇颗粒较多;黄绿叶叶片栅栏组织绿色部分与绿叶的栅栏组织相似,黄色部分与黄叶的栅栏组织棚似,黄色部分的海绵组织中有类似于绿色叶片的海绵组织结构,而绿色部分含有类似于黄叶的海绵组织的结构特征.绿叶细胞内叶绿体较多,形状规则,基粒片层清晰,其内淀粉粒多而大,嗜锇颗粒较少.  相似文献   

11.
J S Keddie  B Carroll  J D Jones    W Gruissem 《The EMBO journal》1996,15(16):4208-4217
The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.  相似文献   

12.
The vascular bundle sheath cells of sugar cane contain starch-storing chloroplasts lacking grana, whereas the adjacent mesophyll cells contain chloroplasts which store very little starch and possess abundant grana. This study was undertaken to determine the ontogeny of these dimorphic chloroplasts. Proplastids in the two cell types in the meristematic region of light-grown leaves cannot be distinguished morphologically. Bundle sheath cell chloroplasts in tissue with 50% of its future chlorophyll possess grana consisting of 2-8 thylakoids/granum. Mesophyll cell chloroplasts of the same age have better developed grana and large, well structured prolamellar bodies. A few grana are still present in bundle sheath cell chloroplasts when the leaf tissue has 75% of its eventual chlorophyll, and prolamellar bodies are also found in mesophyll cell chloroplasts at this stage. The two cell layers in mature dark-grown leaves contain morphologically distinct etio-plasts. The response of these two plastids to light treatment also differs. Plastids in tissue treated with light for short periods exhibit protrusions resembling mitochondria. Plastids in bundle sheath cells of dark-grown leaves do not go through a grana-forming stage. It is concluded that the structure of the specialized chloroplasts in bundle sheath cells of sugar cane is a result of reduction, and that the development of chloroplast dimorphism is related in some way to leaf cell differentiation.  相似文献   

13.
Ogren E 《Plant physiology》1993,101(3):1013-1019
Photosynthesis in the intermediate light range is most efficient when the convexity of the photosynthetic light-response curve is high. Factors determining the convexity were examined for intact leaves using Salix sp. and for a plant cell culture using the green microalga Coccomyxa sp. It was found that the leaf had lower convexity than diluted plant cells because the light gradient through the leaf was not fully matched by a corresponding gradient in photosynthetic capacity. The degree to which the leaf gradients were matched was quantified by measuring photosynthesis at both leaf surfaces using modulated fluorescence. Two principal growth conditions were identified as those causing mismatch of leaf gradients and lowering of the convexity relative to cells. The first was growth under low light, where leaves did not develop any noteworthy gradient in photosynthetic capacity. This led to decreased convexity, particularly in old leaves with high chlorophyll content and, hence, steep light gradients. Second and less conspicuous was growth under high light conditions when light was given bilaterally rather than unilaterally, which yielded leaves of high photosynthetic capacity at both surfaces. Two situations were also identified that caused the convexity to decrease at the chloroplast level: (a) increased light during growth, for both leaves and cells, and (b) increased CO2 concentration during measurement of high-light-grown leaves. These changes of the intrinsic convexity were interpreted to indicate that the convexity declines with increased capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase relative to the capacity of electron transport.  相似文献   

14.
Normally, starch (sugars) and minerals are redistributed from the leaves to the pods during monocarpic senescence in maturing soybean plants. Petiole phloem destruction (steam girdling), which blocked this redistribution by interrupting export through the petiole, altered the foliar senescence pattern producing a distinctive interveinal yellowing with green areas along the veins on pod-bearing plants. This suggests that blockage of the petiole phloem may cause nutrients to accumulate in the green zones along the leaf veins instead of being redistributed to the pods. In the leaves of untreated plants, starch showed the same distribution pattern as chlorophyll; however, starch was preserved in yellow areas as well as the green zones of the steam-girdled leaves. Mineral analyses of the veinal and interveinal zones of treated leaves and controls showed that the veinal green zones and interveinal yellowing in treated plants were not respectively enriched and depleted in minerals corresponding to a redistribution of minerals within the leaves. Depodding also blocked leaf yellowing, net mineral redistribution and starch breakdown. Thus, the pods are able to induce chlorophyll breakdown without net mineral redistribution or starch loss in leaves with petiole phloem destruction. This shows that chlorophyll breakdown is not obligatorily coupled with mineral redistribution or starch breakdown.  相似文献   

15.
Essentially all plants store starch in their leaves during the day and break it down the following night. This transitory starch accumulation acts as an overflow mechanism when the sucrose synthesis capacity is limiting, and transitory starch also acts as a carbon store to provide sugar at night. Transitory starch breakdown can occur by either of two pathways; significant progress has been made in understanding these pathways in C(3) plants. The hydrolytic (amylolytic) pathway generating maltose appears to be the primary source of sugar for export from C(3) chloroplasts at night, whereas the phosphorolytic pathway supplies carbon for chloroplast reactions, in particular in the light. In crassulacean acid metabolism (CAM) plants, the hydrolytic pathway predominates when plants operate in C(3) mode, but the phosphorolytic pathway predominates when they operate in CAM mode. Information on transitory starch metabolism in C(4) plants has now become available as a result of combined microscopy and proteome studies. Starch accumulates in all cell types in immature maize leaf tissue, but in mature leaf tissues starch accumulation ceases in mesophyll cells except when sugar export from leaves is blocked. Proper regulation of the amount of carbon that goes into starch, the pathway of starch breakdown, and the location of starch accumulation could help ensure that engineering of C(4) metabolism is coordinated with the downstream reactions required for efficient photosynthesis.  相似文献   

16.
邬奇  苏娜娜  崔瑾 《西北植物学报》2013,33(6):1171-1176
采用发光二极管调制光谱能量分布,以荧光灯为对照,研究不同光质(红光、蓝光、黄光、绿光)下番茄幼苗生理特性及内源性GA和IAA水平与其生长的关系。结果表明:(1)红光和蓝光有利于番茄幼苗茎的伸长和叶面积的增加。(2)除蓝光处理下可溶性糖含量和SOD活性与对照无显著性差异外,各单色光质处理下番茄幼苗根系活力、色素含量、可溶性蛋白和可溶性糖含量、SOD活性较对照均显著降低。(3)与对照相比,各单色光质处理下番茄幼苗叶片中GA含量显著降低,IAA含量在红光下显著升高,在黄光和绿光下显著降低,且叶面积与IAA含量呈显著正相关关系。(4)番茄幼苗茎中GA和IAA含量在红光和蓝光处理下显著高于对照和黄、绿光处理,且株高与茎中GA和IAA含量呈正相关关系。  相似文献   

17.
The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.  相似文献   

18.
Mature leaves of a transgenic tobacco plant ( Nicotiana tabacum L var. Samsun, line A41-10) that constitutively express a yeast-derived acid invertase gene develop symptoms which are characterized by the presence of greenish-yellow and green sectors in the same leaf, and onset of early, leaf senescence. Previous studies indicated that invertase activity was two- to threefold higher in the greenish-yellow sectors than in the green sectors. Our structural analyses revealed that development of secondary plasmodesmata, via modification of existing primary plasmodesmata, between mesophyll cells was inhibited severely in the greenish-yellow sectors, but only marginally in the green sectors. In contrast, the structure and function of primary plasmodesmata in the same symptomatic sectors remained unaltered as determined by structural and dye coupling studies. It is hypothesized that secondary plasmodesmata differ from primary plasmodesmata in having special abilities to traffic information molecules to coordinate leaf development and physiological function(s). Arrest of secondary plasmodesmal development by high invertase activity in the transgenic tobacco leaf may have prevented this type of trafficking and hence resulted in early leaf senescence. The results also indicate that the yeast acid invertase-expressing tobacco may provide an effective experimental system for the molecular characterization of cellular mechanisms that regulate the development, function, and possible turnover of secondary plasmodesmata.  相似文献   

19.
To study the export of sugars from leaves and their long-distance transport, sucrose-proton/co-transporter activity of potato was inhibited by antisense repression of StSUT1 under control of either a ubiquitously active (CaMV 35S ) or a companion-cell-specific (rolC) promotor in transgenic plants. Transformants exhibiting reduced levels of the sucrose-transporter mRNA and showing a dramatic reduction in root and tuber growth, were chosen to investigate the ultrastructure of their source leaves. The transformants had a regular leaf anatomy with a single-layered palisade parenchyma, and bicollateral minor veins within the spongy parenchyma. Regardless of the promoter used, source leaves from transformants showed an altered leaf phenotype and a permanent accumulation of assimilates as indicated by the number and size of starch grains, and by the occurrence of lipid-storing oleosomes. Starch accumulated throughout the leaf: in epidermis, mesophyll and, to a smaller degree, in phloem parenchyma cells of minor veins. Oleosomes were observed equally in mesophyll and phloem parenchyma cells. Companion cells were not involved in lipid accmulation and their chloroplasts developed only small starch grains. The similarity of ultrastructural symptoms under both promotors corresponds to, rather than contradicts, the hypothesis that assimilates can move symplasmically from mesophyll, via the bundle sheath, up to the phloem. The microscopical symptoms of a constitutively high sugar level in the transformant leaves were compared with those in wild-type plants after cold-girdling of the petiole. Inhibition of sugar export, both by a reduction of sucrose carriers in the sieve element/companion cell complex (se/cc complex), or further downstream by cold-girdling, equally evokes the accumulation of assimilates in all leaf tissues up to the se/cc complex border. However, microscopy revealed that antisense inhibition of loading produces a persistently high sugar level throughout the leaf, while cold-girdling leads only to local patches containing high levels of sugar. Received: 4 March 1998 / Accepted: 7 April 1998  相似文献   

20.
Changes in leaf sugar concentrations are a possible mechanism of short‐term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature‐response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature‐response curves were obtained by increasing the leaf temperature at a rate of 1°C min?1. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break‐point at high temperature, where respiration starts to increase with a faster rate. The average break‐point temperature (TRD) was 48.6 ± 0.7°C at natural sugar concentration. Pulse‐chase experiments with 14CO2 demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature‐response curve as respiration with a break‐point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high‐temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature‐response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non‐specifically protect respiratory membranes or may block the high‐temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break‐points in temperature curves of respiration in sugar‐fed leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号